Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2018 2019 trường THPT Hưng Yên Hưng Yên

Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2018 2019 trường THPT Hưng Yên Hưng Yên Bản PDF Đề thi học kỳ 2 Toán lớp 11 năm 2018 – 2019 trường THPT Hưng Yên – Hưng Yên có mã đề 417, đề thi gồm 4 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, kỳ thi nhằm kiểm tra đánh giá chất lượng môn Toán của học sinh khối 11 trong giai đoạn học kỳ 2 năm học 2018 – 2019. Trích dẫn đề thi học kỳ 2 Toán lớp 11 năm 2018 – 2019 trường THPT Hưng Yên – Hưng Yên : + Tìm mệnh đề sai trong các mệnh đề sau đây? A. Khoảng cách giữa hai đường thẳng chéo nhau a và b là khoảng cách từ một điểm bất kì trên đường thẳng a đến một điểm bất kì trên đường thẳng b. B. Nếu hai đường thẳng a và b chéo nhau và vuông góc với nhau thì đường vuông góc chung của chúng nằm trong mặt phẳng (P) chứa đường này và (P) vuông góc với đường kia. C. Khoảng cách giữa hai mặt phẳng song song là khoảng cách từ một điểm M bất kỳ trên mặt phẳng này đến mặt phẳng kia. D. Khoảng cách giữa đường thẳng a và mặt phẳng (P) song song với a là khoảng cách từ một điểm A bất kì thuộc a tới mặt phẳng (P). [ads] + Cho hình hộp chữ nhật ABCD.A’B’C’D’. Chọn mệnh đề sai trong các mệnh đề sau: A. Khoảng cách giữa đường thẳng A’D và (BCC’B’) bằng BD. B. Khoảng cách giữa hai đường thẳng A’D’ và BD bằng AA’. C. Khoảng cách giữa hai mặt phẳng (ABB’A’) và (CDD’C’) bằng BC. D. Khoảng cách từ điểm A’ đến mặt phẳng (ABCD) bằng AA’. + Trong các khẳng định sau đây, khẳng định nào sai? A. Nếu giá của ba vectơ a, b, c cùng song song với một mặt phẳng thì ba vectơ đó đồng phẳng. B. Nếu ba vectơ a, b, c có một vectơ là 0 thì ba vectơ đồng phẳng. C. Nếu trong ba vectơ a, b, c có hai vec tơ cùng phương thì ba vectơ đó đồng phẳng. D. Nếu giá của ba vectơ cắt nhau từng đôi một thì 3 vectơ đồng phẳng. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học kỳ 2 Toán 11 năm 2021 - 2022 trường THPT Trường Chinh - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi cuối học kỳ 2 môn Toán 11 năm học 2021 – 2022 trường THPT Trường Chinh, thành phố Hồ Chí Minh. Trích dẫn đề thi học kỳ 2 Toán 11 năm 2021 – 2022 trường THPT Trường Chinh – TP HCM : + Viết phương trình tiếp tuyến của đồ thị hàm số 3 1 2 x y f x x biết tiếp tuyến có hệ số góc là k 7. + Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh là a 3 BD a 2 SA vuông góc với đáy SA a. Gọi O là giao điểm của AC và BD. a) Chứng minh mặt phẳng SBD vuông góc với mặt phẳng SAC. b) Tính góc giữa mặt phẳng SBD và mặt phẳng ABCD. + Cho lăng trụ đứng ABC A B C có đáy là tam giác đều cạnh a AA a 2. Gọi I là trung điểm của AC. Tính góc giữa đường thẳng BA’ và mặt phẳng ACC’A’.
Đề thi học kì 2 Toán 11 năm 2021 - 2022 trường THPT Trần Phú - Phú Yên
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kì 2 môn Toán 11 năm học 2021 – 2022 trường THPT Trần Phú, tỉnh Phú Yên; đề thi mã đề 123 gồm 04 trang với 50 câu trắc nghiệm, thời gian làm bài kiểm tra là 90 phút (không kể thời gian phát đề), đề thi có đáp án mã đề 123 124 125 126. Trích dẫn đề thi học kì 2 Toán 11 năm 2021 – 2022 trường THPT Trần Phú – Phú Yên : + Cho lăng trụ đứng tam giác ABC A B C có đáy là một tam giác vuông cân tại B AB AA a 2 M là trung điểm BC. Khoảng cách giữa hai đường thẳng AM và B C bằng? + Cho hình hộp ABCD EFGH. Các vectơ có điểm đầu và điểm cuối là các đỉnh của hình hộp và bằng vectơ AB là? + Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a SA vuông góc với mặt phẳng đáy. Tính khoảng cách giữa hai đường thẳng SA và BC.
Đề thi HK2 Toán 11 năm 2021 - 2022 trường THPT Ngô Gia Tự - Đắk Lắk
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi cuối học kỳ 2 môn Toán 11 năm học 2021 – 2022 trường THPT Ngô Gia Tự, tỉnh Đắk Lắk; đề thi mã đề 001 gồm 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm khách quan, thời gian học sinh làm bài kiểm tra là 90 phút (không kể thời gian phát đề), đề thi có đáp án mã đề 001 002 003 004 005 006 007 008. Trích dẫn đề thi HK2 Toán 11 năm 2021 – 2022 trường THPT Ngô Gia Tự – Đắk Lắk : + Khẳng định nào sau đây sai? A. Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau nằm trong mặt phẳng thì d vuông góc với bất kỳ đường thẳng nào nằm trong mặt phẳng. B. Nếu d và đường thẳng a thì d a. C. Nếu đường thẳng d vuông góc với hai đường thẳng nằm trong mặt phẳng thì d vuông góc với mặt phẳng. D. Nếu đường thẳng d vuông góc với mặt phẳng thì d vuông góc với hai đường thẳng trong mặt phẳng. + Trong các mệnh đề dưới đây, mệnh đề nào sai? A. Hình chóp tứ giác đều có tất cả các cạnh bằng nhau. B. Hình chóp tứ giác đều có đáy là hình vuông. C. Hình chóp tứ giác đều có các cạnh bên bằng nhau. D. Hình chóp tứ giác đều có hình chiếu vuông góc của đỉnh lên đáy trùng với tâm của đáy. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Đường thẳng SA vuông góc với mặt phẳng đáy SA a. Khoảng cách từ D đến mặt phẳng SAB là? A. DI I là trung điểm của SA. B. DA. C. DS. D. DB.
Đề thi học kỳ 2 Toán 11 năm 2021 - 2022 trường Lương Thế Vinh - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi cuối học kỳ 2 môn Toán 11 năm học 2021 – 2022 trường THPT Lương Thế Vinh, thành phố Hà Nội; đề thi được biên soạn theo hình thức 100% trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giám thị giao đề), đề thi có đáp án mã đề 111 – 112 – 113 – 114. Trích dẫn đề thi học kỳ 2 Toán 11 năm 2021 – 2022 trường Lương Thế Vinh – Hà Nội : + Cho hàm số y = f(x) xác định trên R và có bảng biến thiên như hình vẽ. Kết luận nào sau đây là đúng? A. Hàm số đồng biến trên mỗi khoảng (−∞; −1), (1; +∞) B. Hàm số đồng biến trên mỗi khoảng (−∞; 0), (−1; +∞) C. Hàm số đồng biến trên mỗi khoảng (−∞; 0), (−1; +∞) và nghịch biến trên (0; −1) D. Hàm số nghịch biến trên khoảng (0; −1). + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = a, AD = a√3, SA ⊥ (ABCD), SA = a√3. Gọi O là giao điểm của AC và BD. Gọi α là góc giữa SO và mặt phẳng (ABCD). Tính tan α. + Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân đỉnh C có AC = a. Mặt phẳng (SAB) vuông góc với đáy. Biết diện tích tam giác S AB bằng 1 2 a 2. Khi đó khoảng cách từ S đến mặt phẳng (ABC) bằng?