Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT chuyên môn Toán năm 2022 2023 sở GD ĐT Quảng Trị

Nội dung Đề tuyển sinh THPT chuyên môn Toán năm 2022 2023 sở GD ĐT Quảng Trị Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên môn Toán năm 2022 2023 sở GD ĐT Quảng Trị Đề thi tuyển sinh THPT chuyên môn Toán năm 2022 2023 sở GD ĐT Quảng Trị Sytu xin giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 bộ đề thi chính thức của kỳ thi tuyển sinh vào lớp 10 trường THPT chuyên môn Toán năm học 2022 – 2023 của sở Giáo dục và Đào tạo tỉnh Quảng Trị. Bộ đề thi bao gồm đề thi, đáp án, lời giải chi tiết và thang hướng dẫn chấm điểm; kỳ thi sẽ diễn ra vào ngày 06 tháng 06 năm 2022. Trích dẫn bộ đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2022 – 2023 sở GD&ĐT Quảng Trị: Tìm tất cả các số nguyên tố p và q thỏa mãn 2^(p-1) + 2^(q-1) = 2^q. Ba cầu thủ của một đội bóng trò chuyện với nhau về số áo được in trên áo mỗi người, nội dung như sau: An: Tôi nhận ra rằng các số trên áo của chúng ta đều là số nguyên tố có hai chữ số. Bình: Tổng hai số trên áo của hai bạn là ngày sinh nhật của tôi đã trôi qua vào tháng này. Chung: Thật thú vị! Tổng hai số trên áo của hai bạn là ngày sinh nhật của tôi sắp tới vào tháng này. An: Và tổng hai số trên áo hai bạn là ngày hôm nay. Hãy xác định số áo của An, Bình và Chung. Cho biểu thức 2f(x) = ax^2 + bx + c (với abc ≠ 0). Đặt ∆ = b^2 - 4ac. Chứng minh rằng nếu ∆ ≤ 0 thì f(x) ≥ 0 với mọi số thực x. File WORD (dành cho quý thầy, cô): [file đính kèm]

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán trường chuyên Lê Quý Đôn - Bình Định (Chuyên Toán)
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán trường chuyên Lê Quý Đôn – Bình Định (Chuyên Toán) gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho đường tròn (T) tâm O đường kı́nh AB, trên tiếp tuyến tại A lấy một điểm P khác A, điểm K thuôc đoạn OB (K khác O và B). Đường thẳng PK cắt đường tròn (T) tại C và D (C nằm giữa P và D), H là trung điểm của CD [ads] a) Chứng minh tứ giác AOHP nội tiếp được đường tròn b) Kẻ DI song song với PO, điểm I thuôc AB, chứng minh: góc PDI = góc BAH c) Chứng minh đẳng thức PA^2 = PC.PD d) BC cắt OP tai J, chứng minh AJ song song với DB
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT chuyên Hùng Vương - Phú Thọ (Chuyên Toán)
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên Hùng Vương – Phú Thọ (Dành cho thí sinh thi chuyên Toán) gồm 5 bài toán tự luận. Trích một số bài toán trong đề: + Tìm các số nguyên m sao cho m^2 + 12 là số chính phương. + Chứng minh rằng trong 11 số nguyên tố phân biệt, lớn hơn 2 bất kỳ luôn chọn được hai số gọi là a, b sao cho a^2 – b^2 chia hết cho 60. + Cho tam giác ABC cân với góc BAC = 120 độ, nội tiếp đường tròn (O). Gọi D là giao điểm của đường thẳng AC với tiếp tuyến của (O) tại B; E là giao điểm của đường thẳng BO với đường tròn (O) ( E khác B); F, I lần lượt là giao điểm của DO với AB, BC; M, N lần lượt là trung điểm của AB, BC [ads] a) Chứng minh rằng tứ giác ADBN nội tiếp b) Chứng minh rằng F, N, E thẳng hàng c) Chứng minh rằng các đường thẳng MI, BO, FN đồng quy
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT chuyên Hùng Vương - Phú Thọ (Chuyên Tin)
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên Hùng Vương – Phú Thọ (Dành cho thí sinh thi chuyên Tin) gồm 5 bài toán tự luận. Trích một số bài toán trong đề: + Cho đường tròn (O; R) có đường kính AB, M là điểm thuộc đoạn AB (M không trùng với A và B). Qua M vẽ đường thẳng (d) vuông góc với AB. Trên (d) lấy điểm C nằm ngoài (O). Vẽ các tiếp tuyến CE, CF với (O) ( E, F là tiếp điểm). Gọi H, K lần lượt là giao điểm của CA, CB với (O) (H khác A, K khác B), I là giao điểm của AK và BH [ads] a) Chứng minh các điểm C, M, E, F, O cùng thuộc một đường tròn b) Chứng minh ba điểm E, F, I thẳng hàng c) Xác định vị trí điểm C để tâm đường tròn ngoại tiếp tam giác ABC nằm trên đường thẳng EF
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Bắc Giang
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Bắc Giang gồm 5 bài toán tự luận, có lời giải chi tiết.