Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Khối đa diện, nón - trụ - cầu trong các đề thi thử THPTQG môn Toán

Tài liệu gồm 514 trang được sưu tầm và biên soạn bởi thầy giáo Th.S Nguyễn Chín Em, tuyển tập các câu hỏi và bài tập trắc nghiệm các chuyên đề: khối đa diện và thể tích khối đa diện, mặt nón – mặt trụ – mặt cầu có đáp án và lời giải chi tiết trong các đề thi thử THPT Quốc gia môn Toán những năm gần đây; giúp các em học sinh khối 12 học tốt chương trình Hình học 12 chương 1 (khối đa diện và thể tích của chúng), Hình học 12 chương 2 (mặt nón – mặt trụ – mặt cầu) và ôn thi THPT Quốc gia môn Toán. Nội dung tài liệu được chia thành 4 phần dựa theo độ khó của các câu hỏi và bài toán: + Phần 1. Mức độ nhận biết (Trang 3). + Phần 2. Mức độ thông hiểu (Trang 95). + Phần 3. Mức độ vận dụng thấp (Trang 284). + Phần 4. Mức độ vận dụng cao (Trang 442). Trích dẫn tài liệu khối đa diện, nón – trụ – cầu trong các đề thi thử THPTQG môn Toán: + Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì ta có thể chia hình lập phương thành? A. 4 tứ diện đều và 1 hình chóp tam giác đều. B. 5 tứ diện đều. C. 1 tứ diện đều và 4 hình chóp tam giác đều. D. 5 hình chóp tam giác đều, không có tứ diện đều. + Cho khối lập phương ABCD.A0B0C0D0. Mặt phẳng (ACC0) chia khối lập phương trên thành những khối đa diện nào? A. Hai khối lăng trụ tam giác ABC.A0B0C0 và ACD.A0C0D0. B. Hai khối chóp tam giác C0ABC và C0.ACD. C. Hai khối chóp tứ giác C0.ABCD và C0.ABB0A0. D. Hai khối lăng trụ tứ giác ABC.A0B0C0 và ACD.A0C0D0. [ads] + Cho hình chóp S.ABCD có đáy là hình thang cân với đáy AB = 2a, AD = BC = CD = a, mặt bên SAB là tam giác cân đỉnh S và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Biết khoảng cách từ A đến mặt phẳng (SBC) bằng 2a√15/5, tính theo a thể tích V của khối chóp S.ABCD. + Trong không gian cho đoạn thẳng AB cố định và có độ dài bằng 4. Qua các điểm A và B lần lượt kẻ các tia Ax và By chéo nhau và hợp nhau góc 30◦, đồng thời cùng vuông góc với đoạn thẳng AB. Trên các tia Ax và By lần lượt lấy các điểm M, N sao cho MN = 5. Đặt AM = a, BN = b. Biết thể tích khối tứ diện ABMN bằng √3/3. Tính giá trị biểu thức S = (a2 + b2)2. + Cho tứ diện ABCD có thể tích V. Gọi A1B1C1D1 là tứ diện với các đỉnh lần lượt là trọng tâm tam giác BCD, CDA, DAB, ABC và có thể tích V1. Gọi A2B2C2D2 là tứ diện với các đỉnh lần lượt là trọng tâm tam giác B1C1D1, C1D1A1, D1A1B1, A1B1C1 và có thể tích V2, . . . cứ như vậy cho tứ diện AnBnCnDn có thể tích Vn với n là số tự nhiên lớn hơn 1. Tính giá trị của biểu thức P = lim n→+∞ (V + V1 + · · · + Vn).

Nguồn: toanmath.com

Đọc Sách

Chuyên đề mặt cầu, mặt trụ, mặt nón ôn thi THPT 2021 - Nguyễn Bảo Vương
Tài liệu gồm 373 trang, được biên soạn bởi thầy giáo Nguyễn Bảo Vương, hướng dẫn phương pháp giải các dạng toán và tuyển chọn các bài tập trắc nghiệm chuyên đề mặt cầu, mặt trụ, mặt nón (Hình học 12 chương 2), có đáp án và lời giải chi tiết, giúp học sinh học tốt chương trình Toán 12 và ôn thi THPT môn Toán năm học 2020 – 2021. CHUYÊN ĐỀ 1 . MẶT NÓN, HÌNH NÓN VÀ KHỐI NÓN. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH YẾU – TRUNG BÌNH (Mức độ 5 – 6 điểm). + Dạng toán 1. Diện tích xung quanh, diện tích toàn phần, chiều cao, bán kính đáy, thiết diện khối nón. + Dạng toán 2. Thể tích khối nón. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH KHÁ (Mức độ 7 – 8 điểm). + Dạng toán 1. Diện tích xung quanh, diện tích toàn phần, chiều cao, bán kính đáy, thiết diện khối nón. + Dạng toán 2. Thể tích khối nón. + Dạng toán 3. Khối nón tròn xoay nội tiếp, ngoại tiếp khối đa diện. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH GIỎI – XUẤT SẮC (Mức độ 9 – 10 điểm). + Dạng toán. Một số bài toán VD – VDC liên quan đến khối nón (các bài toán thực tế – cực trị). CHUYÊN ĐỀ 2 . MẶT TRỤ, HÌNH TRỤ VÀ KHỐI TRỤ. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH YẾU – TRUNG BÌNH (Mức độ 5 – 6 điểm). + Dạng toán 1. Diện tích xung quanh, diện tích toàn phần, chiều cao, bán kính đáy, thiết diện khối trụ. + Dạng toán 2. Thể tích khối trụ. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH KHÁ (Mức độ 7 – 8 điểm). + Dạng toán 1. Diện tích xung quanh, diện tích toàn phần, chiều cao, bán kính đáy, thiết diện khối trụ. + Dạng toán 2. Thể tích khối trụ. + Dạng toán 3. Khối trụ tròn xoay nội tiếp, ngoại tiếp khối đa diện. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH GIỎI – XUẤT SẮC (Mức độ 9 – 10 điểm). + Dạng toán. Một số bài toán VD – VDC liên quan đến khối trụ (các bài toán thực tế – cực trị). CHUYÊN ĐỀ 3 . MẶT CẦU VÀ KHỐI CẦU. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH YẾU – TRUNG BÌNH (Mức độ 5 – 6 điểm). + Dạng toán 1. Diện tích xung quanh, bán kính mặt cầu – khối cầu. + Dạng toán 2. Thể tích khối cầu. + Dạng toán 3. Khối cầu nội tiếp, ngoại tiếp khối lăng trụ. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH KHÁ (Mức độ 7 – 8 điểm). + Dạng toán 1. Khối cầu ngoại tiếp khối lăng trụ. + Dạng toán 2. Khối cầu ngoại tiếp khối chóp. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH GIỎI – XUẤT SẮC (Mức độ 9 – 10 điểm). + Dạng toán. Một số bài toán thực tế – cực trị liên quan đến mặt cầu – khối cầu. CHUYÊN ĐỀ 4 . MỘT SỐ BÀI TOÁN TỔNG HỢP KHỐI TRÒN XOAY.
Chuyên đề mặt cầu, mặt trụ, mặt nón dành cho học sinh trung bình - yếu - Dương Minh Hùng
Tài liệu gồm 50 trang, được biên soạn bởi thầy giáo Dương Minh Hùng, tổng hợp lý thuyết cần nắm, phân dạng và tuyển chọn các bài tập tự luận & trắc nghiệm (mức độ nhận biết – thông hiểu, có đáp án và lời giải chi tiết) chuyên đề mặt cầu, mặt trụ, mặt nón dành cho học sinh trung bình – yếu. Bài 1 . MẶT NÓN TRÒN XOAY. Dạng 1. Dạng cơ bản (cho các thông số r, h, l). Dạng 2. Thiết diện qua trục SO. Dạng 3. Khối nón sinh bởi tam giác quay quanh các trục. Dạng 4. Bài toán thiết diện qua đỉnh và mối liên hệ với góc hoặc khoảng cách. Bài 2 . MẶT TRỤ TRÒN XOAY. Dạng 1. Dạng cơ bản (cho các thông số r, h, l). Dạng 2. Sự tạo thành mặt trụ tròn xoay. Dạng 3. Sự tương giao giữa hình trụ và mặt phẳng, đường thẳng. Bài 3 . MẶT CẦU. Dạng 1. Công thức lí thuyết cơ bản. Dạng 2. Khối cầu ngoại tiếp khối đa diện. Bài 4 . BÀI TOÁN NỘI TIẾP – NGOẠI TIẾP. Dạng 1. Mặt nón nội tiếp – ngoại tiếp hình chóp – trụ – cầu. Dạng 2. Mặt trụ nội tiếp – ngoại tiếp hình chóp – nón – cầu. Dạng 2. Mặt cầu nội tiếp – ngoại tiếp hình chóp – nón – trụ. Xem thêm : Chuyên đề thể tích khối đa diện dành cho học sinh trung bình – yếu – Dương Minh Hùng
Chuyên đề mặt nón, mặt trụ và mặt cầu - Lê Văn Đoàn
Tài liệu gồm 72 trang, được biên soạn bởi nhóm Toán thầy Lê Văn Đoàn: Ths. Lê Văn Đoàn – Ths. Trương Huy Hoàng – Ths. Nguyễn Tiến Hà – Bùi Sỹ Khanh – Nguyễn Đức Nam – Đỗ Minh Tiến, phân dạng và tuyển chọn các bài tập trắc nghiệm (có đáp án) thuộc chương trình Hình học 12 chương 2: Mặt nón – Mặt trụ – Mặt cầu. Mục lục tài liệu chuyên đề mặt nón, mặt trụ và mặt cầu – Lê Văn Đoàn: CHỦ ĐỀ 1 . MẶT NÓN. Dạng toán 1. Xác định các yếu tố cơ bản của khối nón. Dạng toán 2. Khối nón ngoại tiếp, nội tiếp khối đa diện. Bài tập về nhà. CHỦ ĐỀ 2 . MẶT TRỤ. Dạng toán 1. Xác định các yếu tố cơ bản của khối trụ. Dạng toán 2. Khối trụ ngoại tiếp, nội tiếp khối đa diện. Bài tập về nhà. CHỦ ĐỀ 3 . MẶT CẦU. Dạng toán 1. Xác định các yếu tố cơ bản của của mặt cầu. Dạng toán 2. Mặt cầu ngoại tiếp, nội tiếp khối nón, khối trụ. Dạng toán 3. Mặt cầu ngoại tiếp, nội tiếp khối chóp. + Nhóm 1. Hình chóp có cạnh bên vuông đáy. + Nhóm 2. Hình chóp đều. + Nhóm 3. Hình chóp có cạnh bên vuông với đáy. Dạng toán 4. Mặt cầu ngoại tiếp, nội tiếp hình lăng trụ, hình lập phương. Bài tập rèn luyện lần 1. Bài tập rèn luyện lần 2. Bài tập rèn luyện lần 3. Bài tập rèn luyện lần 4.
Tài liệu bồi dưỡng học sinh giỏi hình học không gian
Tài liệu gồm 103 trang, được sưu tầm và tổng hợp bởi nhóm tác giả Tạp Chí Và Tư Liệu Toán Học, tuyển tập các chuyên đề bồi dưỡng học sinh giỏi hình học không gian. Chương 1 . Phương pháp Vector. I. Cơ sở của phương pháp vector. II. Các bài toán ứng dụng vector. + Bài toán 1. Chứng minh đẳng thức vec tơ. + Bài toán 2. Chứng minh ba vec tơ đồng phẳng và bốn điểm đồng phẳng. + Bài toán 3. Tính độ dài đoạn thẳng. + Bài toán 4. Sử dụng điều kiện đồng phẳng của bốn điểm để giải bài toán hình không gian. + Bài toán 5. Tính góc giữa hai đường thẳng. Chương 2 . Các khối tứ diện đặc biệt. Trong chương trình hình học không gian bậc THPT có lẽ khối đa diện được nhắc tới nhiều nhất và cũng đồng thời được khai thác rất nhiều trong các đề thi thử, HSG, THPT Quốc gia chính là khối tứ diện. Chắc hẳn nhiều bạn đã từng gặp qua các bài toán về tứ diện mà các giả thiết của nó trông rất lạ, hoặc một số bài toán tính thể tích mà trong đó giả thiết liên quan tới góc hoặc tới cạnh chẳng hạn, và chúng ta chưa có cách giải quyết chúng. Vì thế trong chương này tôi sẽ cùng bạn đọc tìm hiểu các bài toán liên quan tới tứ diện từ dễ đến khó để có thể giải quyết hoàn toàn vấn đề này. I. Khối tứ diện tổng quát. + Công thức tính đường trọng tuyến. + Một số công thức về diện tích. + Một số công thức về thể tích của tứ diện. [ads] II. Các khối tứ diện đặc biệt. + Khối tứ diện vuông. + Khối tứ diện gần đều. + Tính chất của tứ diện trực tâm. Chương 3 . Cực trị hình học không gian. Cực trị và bất đẳng thức nói chung luôn là các bài toán khó yêu cầu người làm bài phải có kỹ năng tốt về bất đẳng thức cũng như kiến thức vững về hàm số cũng như đạo hàm. Trong chương này chúng ta sẽ cùng đi tìm hiểu lớp bài toán cực trị hình không gian cũng như bất đẳng thức trong hình không gian. I. Các kiến thức cơ bản về bất đẳng thức. + Bất đẳng thức Cauchy – AM – GM. + Bất đẳng thức Cauchy – Schwarz. + Bất đẳng thức Minkowski. II. Phương pháp giải các bài toán cực trị. + Bước 1. Biểu diễn đối tượng đề bài yêu cầu qua một (hoặc hai) đại lượng chưa biết ta gọi là biến x. + Bước 2. Tìm điều kiện của biến x dựa vào giả thiết đã cho. + Bước 3. Khảo sát hàm số theo biến x để tìm ra kết quả của bài toán.