Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPTQG 2019 trường chuyên Lương Thế Vinh - Đồng Nai lần 1

Chiều thứ Bảy ngày 06 tháng 04 năm 2019, trường THPT chuyên Lương Thế Vinh – Đồng Nai tổ chức kỳ thi thử THPT Quốc gia môn Toán năm học 2018 – 2019 lần 1, nhằm kiểm tra đánh giá kiến thức môn Toán của học sinh khối 12 trong quá trình chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm 2019. Qua đây, các em học sinh sẽ có cái nhìn rõ nét hơn về cấu trúc và độ khó của đề thi THPT Quốc gia môn Toán, để từ đó có sự ôn tập và chuẩn bị kỹ lưỡng. Đề thi thử Toán THPTQG 2019 trường chuyên Lương Thế Vinh – Đồng Nai lần 1 có mã đề 101, đề gồm 04 trang với 50 câu trắc nghiệm 04 đáp án lựa chọn, học sinh làm bài thi thử Toán trong 90 phút. [ads] Trích dẫn đề thi thử Toán THPTQG 2019 trường chuyên Lương Thế Vinh – Đồng Nai lần 1 : + Nhằm chào mừng ngày thành lập Đoàn TNCS Hồ Chí Minh, Đoàn trường THPT chuyên Lương Thế Vinh – Đồng Nai đã tổ chức giải bóng đá nam. Có 16 đội đăng kí tham dự trong đó có 3 đội 10 Toán, 11 Toán và 12 Toán. Ban tổ chức cho bốc thăm ngẫu nhiên để chia đều 16 đội vào 4 bảng để đá vòng loại. Tính xác suất để 3 đội của 3 lớp Toán nằm ở 3 bảng khác nhau. + Cho một cái hộp hình hộp chữ nhật có kích thước ba cạnh lần lượt là 4 cm, 6 cm, 9 cm như hình vẽ. Một con kiến ở vị trí A muốn đi đến vị trí B. Biết rằng con kiến chỉ có thể bò trên cạnh hoặc trên bề mặt của hình hộp đã cho. Gọi x cm là quãng đường ngắn nhất con kiến đi từ A đến B. Khẳng định nào sau đây đúng? + Cho số phức z = 1 – 2i. Khẳng định nào sau đây là khẳng định đúng? A. Số phức z là số thuần ảo. B. Phần ảo của số phức z là –2i. C. Phần thực của số phức z là 1. D Phần ảo của số phức z là 2.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán TN THPT 2022 lần 2 trường THPT Quốc Tuấn - Hải Phòng
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán ôn thi tốt nghiệp THPT năm học 2021 – 2022 lần 2 trường THPT Quốc Tuấn, thành phố Hải Phòng (mã đề 134). Trích dẫn đề thi thử Toán TN THPT 2022 lần 2 trường THPT Quốc Tuấn – Hải Phòng : + Một người lần đầu gửi vào ngân hàng 100 triệu đồng với kì hạn 3 tháng, lãi suất 2% một quý. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi quý số tiền lãi sẽ được nhập vào gốc để tính lãi cho quý tiếp theo. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước đó. Tổng số tiền người đó nhận được 1 năm sau khi gửi tiền gần nhất với kết quả nào sau đây? A. 210 triệu. B. 220 triệu. C. 212 triệu. D. 216 triệu. + Cho hàm số bậc ba y f x có đồ thị C1 và hàm số bậc hai y g x có đồ thị C2. Biết C1 và C2 cắt nhau tại các điểm có hoành độ là 1 2 3 đồng thời C1 đi qua điểm A 1 7 và C2 đi qua điểm B 1 1. Tính diện tích hình phẳng giới hạn bởi hai đường C C 1 2. + Một hộp đựng 7 chiếc bút bi đen và 8 chiếc bút bi xanh. Lấy đồng thời và ngẫu nhiên hai chiếc bút từ hộp. Tính xác suất để 2 chiếc bút lấy được có cùng màu?
Đề thi thử Toán TN THPT lần 4 năm 2021 - 2022 trường Thanh Miện 2 - Hải Dương
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán tốt nghiệp THPT lần 4 năm học 2021 – 2022 trường THPT Thanh Miện 2, tỉnh Hải Dương; đề thi có đáp án mã đề 132 133 134 135. Trích dẫn đề thi thử Toán TN THPT lần 4 năm 2021 – 2022 trường Thanh Miện 2 – Hải Dương : + Trên bức tường cần trang trí một hình phẳng dạng parabol đỉnh S như hình vẽ, biết OS AB 4 m, O là trung điểm của AB. Parabol trên được chia thành ba phần để sơn ba màu khác nhau với mức chi phí: phần trên là phần kẻ sọc 140000 đồng/m2, phần giữa là hình quạt tâm O, bán kính 2 m được tô đậm 150000 đồng/m2, phần còn lại 160000 đồng/ 2m. Tổng chi phí để sơn cả 3 phần gần nhất với số nào sau đây? + Ba cầu thủ sút phạt đền 11m, mỗi người đá một lần với xác suất làm bàn tương ứng là x, y và 0,6 (với x > y). Biết xác suất để ít nhất một trong ba cầu thủ ghi bàn là 0,976 và xác suất để cả ba cầu thủ đều ghi bàn là 0,336. Tính xác suất để có đúng hai cầu thủ ghi bàn. + Trong không gian Oxyz, cho mặt cầu 2 2 2 Sx y z 38 và hai điểm A(4;4;3), B(1;1;1). Gọi (C) là tập hợp các điểm M ∈(S) để |MA – 2MB| đạt giá trị nhỏ nhất. Biết rằng (C) là một đường tròn bán kính r. Tính r.
Đề thi thử tốt nghiệp THPT 2022 môn Toán cụm CSGD Đông Triều - Quảng Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2022 môn Toán cụm CSGD thị xã Đông Triều, tỉnh Quảng Ninh; đề thi có đáp án và lời giải chi tiết các bài toán vận dụng – vận dụng cao. Trích dẫn đề thi thử tốt nghiệp THPT 2022 môn Toán cụm CSGD Đông Triều – Quảng Ninh : + Cho hàm số bậc ba 1 3 2 2 f x x bx cx d có đồ thị là C cắt trục hoành tại 3 phân biệt trong đó 2 điểm có hoành độ hoành độ lần lượt là x x 1 2. Đường thẳng d tiếp tuyến của đồ thị C tại điểm có hoành độ 5 4 x cắt đồ thị tại điểm có hành độ 5 3 x. Gọi 1 S là diện tích hình phẳng giới hạn bởi phần đồ thị C bên dưới trục hoành với trục hoành, 2 S là diện tích hình phẳng giới hạn bởi đồ thị C và tiếp tuyến d (như hình vẽ bên). + Trong không gian Oxyz, cho mặt phẳng P x y z 2 2 7 0 điểm M 2 1 1 và mặt cầu 2 2 2 S x y z x y z 4 2 4 7 0. Đường thẳng d qua M cắt P S lần lượt tại các điểm A, B sao cho M là trung điểm AB. Biết độ dài ngắn nhất của đoạn AB là 2 2 a b giá trị của a + b bằng? + Cho hình nón đỉnh S có chiều cao h 5 và bán kính đáy r  2 2. Mặt phẳng P đi qua S và điểm M nằm trong đường tròn đáy cách tâm đáy một khoảng bằng 1. Diện tích thiết diện của hình nón cắt bởi mặt phẳng P có giá trị lớn nhất là?
Đề thi thử Toán TN THPT 2022 lần 3 trường chuyên Hạ Long - Quảng Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán ôn thi tốt nghiệp THPT năm học 2021 – 2022 lần 3 trường THPT chuyên Hạ Long, tỉnh Quảng Ninh. Trích dẫn đề thi thử Toán TN THPT 2022 lần 3 trường chuyên Hạ Long – Quảng Ninh : + Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3;5;-2); B(-1;3;2) và mặt phẳng (P): 2x + y − 2z + 9 = 0. Mặt cầu (S) đi qua hai điểm A; B và tiếp xúc với (P) tại điểm C. Gọi M; m lần lượt là giá trị lớn nhất và nhỏ nhất của độ dài OC. Giá trị M2 + m2 bằng? + Một chiếc cốc hình trụ có đường kính đáy 6cm và chiều cao 15cm chứa đầy nước. Nghiêng cốc cho nước chảy từ từ ra ngoài cho đến khi mép nước ngang với đường kính của đáy (tham khảo hình vẽ bên). Khi đó thể tích của nước còn lại trong cốc bằng? + Cho hình trụ có hai đường tròn đáy là (O) và (O’); bán kính đáy r = 5cm; hai điểm A và B lần lượt nằm trên hai đường tròn (O) và (O’) sao cho AB = 10cm và đường thẳng AB cách trục OO’ một khoảng bằng 3cm. Thể tích của khối trụ giới hạn bởi hình trụ đã cho là?