Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 12 lần 3 năm 2022 - 2023 trường THPT Kim Liên - Hà Nội

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra khảo sát chất lượng môn Toán 12 lần 3 năm học 2022 – 2023 trường THPT Kim Liên, thành phố Hà Nội; hướng đến kỳ thi tốt nghiệp THPT 2023 môn Toán. Trích dẫn Đề khảo sát Toán 12 lần 3 năm 2022 – 2023 trường THPT Kim Liên – Hà Nội : + Trong không gian Oxyz, cho mặt phẳng P đi qua điểm A(0;1;2) và song song với mặt phẳng Oxy. Gọi B C lần lượt là hình chiếu của A trên trục Oy Oz; E là trung điểm đoạn AB và I là điểm di động trên cạnh OC. Tam giác đều ACD nằm trong mặt phẳng P đồng thời điểm D có hoành độ dương. Khi diện tích tam giác DEI đạt giá trị nhỏ nhất, hãy tính độ dài đoạn thẳng EI. + Cho khối nón (Ν) có đỉnh S, chiều cao bằng 10, đáy là đường tròn tâm O. Gọi A B là hai điểm thuộc đường tròn đáy sao cho khối chóp S.OAB có thể tích bằng 40. Biết khoảng cách từ O đến mặt phẳng SAB bằng 20 29 29. Tính thể tích khối nón (Ν). + Cho hình lăng trụ ABCD A B C D có đáy là hình vuông. Hình chiếu vuông góc của A′ trên mặt phẳng (ABCD) trùng với trung điểm H của AB (tham khảo hình vẽ). Biết góc giữa hai mặt phẳng (ACD′) và (ABCD) bằng 60° và AA a 13. Tính thể tích V của khối lăng trụ ABCD A B C D.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Quốc gia 2016 môn Toán trường Trương Vĩnh Ký - Bến Tre
Đề thi thử Quốc gia 2016 môn Toán trường Trương Vĩnh Ký – Bến Tre có đáp án và thang điểm chi tiết. Đề thi và đáp án gồm 6 trang: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị hàm số phân thức hữu tỉ. Câu 2: Tìm m để hàm số đạt cực tiểu tại x =1. Câu 3: a) Tìm môđun của số phức w. b) Giải phương trình mũ. Câu 4: Tính tích phân. Câu 5: Viết phương trình mặt cầu (S) có đường kính AB. Chứng minh (S) cắt (P) theo một đường tròn giao tuyến và tính bán kính của đường tròn giao tuyến đó. Câu 6: a) Tính giá trị của biểu thức lượng giác. b) Tìm số hạng không chứa x trong khai triển nhị thức. Câu 7: Tính theo a thể tích khối lăng trụ ABC.A’B’C’ và khoảng cách từ điểm M đến mặt phẳng (BC’N). Câu 8: Xác định tọa độ các đỉnh của tam giác ABC. Câu 9: Giải bất phương trình. Câu 10: Giải hệ phương trình.
Đề thi thử THPT Quốc gia 2016 môn Toán trường Chu Văn An - Hà Nội
Đề thi thử THPT Quốc gia 2016 môn Toán trường Chu Văn An – Hà Nội có đáp án và thang điểm chi tiết. Đề thi và đáp án gồm 6 trang: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị hàm số bậc ba. Câu 2: Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số. Câu 3: 1) Tìm môđun của số phức z. 2) Giải phương trình logarit. Câu 4: Tính tích phân. Câu 5: Tính góc giữa mặt phẳng (P) và mặt phẳng tọa độ (Oyz). Câu 6: 1) Tính xác suất để sách cùng môn thì nằm cạnh nhau. 2) Tính giá trị biểu thức lượng giác. Câu 7: Tính theo a thể tích của khối chóp S.ABCD và khoảng cách từ D đến mặt phẳng (SBM) với M là trung điểm của CD. Câu 8: Tìm tọa độ các đỉnh còn lại của tam giác ABC. Câu 9: Giải hệ phương trình. Câu 10: Tìm giá trị lớn nhất của biểu thức 3 biến P.
Đề thi thử Quốc gia 2016 môn Toán trường Nguyễn Duy Hiệu - Quảng Nam
Đề thi thử THPT Quốc gia 2016 môn Toán trường Nguyễn Duy Hiệu – Quảng Nam có đáp án và thang điểm chi tiết. Đề thi và đáp án gồm 6 trang: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị hàm số bậc ba. Câu 2: Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số. Câu 3: 1) Tìm môđun của số phức z. 2) Giải phương trình logarit. Câu 4: Tính tích phân. Câu 5: Tính góc giữa mặt phẳng (P) và mặt phẳng tọa độ (Oyz). Câu 6: 1) Tính xác suất để sách cùng môn thì nằm cạnh nhau. 2) Tính giá trị biểu thức lượng giác. Câu 7: Tính theo a thể tích của khối chóp S.ABCD và khoảng cách từ D đến mặt phẳng (SBM) với M là trung điểm của CD. Câu 8: Tìm tọa độ các đỉnh còn lại của tam giác ABC. Câu 9: Giải hệ phương trình. Câu 10: Tìm giá trị lớn nhất của biểu thức 3 biến P.
Đề thi thử THPT Quốc gia 2016 môn Toán trường Hàm Rồng - Thanh Hóa
Đề thi thử THPT Quốc gia 2016 môn Toán trường Hàm Rồng – Thanh Hóa có đáp án và thang điểm chi tiết. Đề thi và đáp án gồm 6 trang: Câu 1: a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số phân thức hữu tỉ. b) Viết phương trình tiếp tuyến của (C), biết tiếp tuyến song song với đường thẳng d. Câu 2: a) Giải phương trình lượng giác. b) Giải bất phương trình logarit. Câu 3: Tính tích phân. Câu 4: Viết phương trình mặt phẳng (P) đi qua ba điểm A, B, C và tìm tọa độ hình chiếu vuông góc H của C lên đường thẳng AB. Câu 5: a) Tính modun của z. b) Tính xác suất để danh sách được lập có 2 tiết mục của khối 10, có 2 tiết mục của khối 11 và có 1 tiết mục của khối 12. Câu 6: Tính theo a thể tích của khối chóp S.ABC và khoảng cách giữa hai đường thẳng SC và BM. Câu 7: Tìm tọa độ điểm D và phương trình AB biết điểm M và D có tung độ dương. Câu 8: Giải hệ phương trình. Câu 9: Tìm giá trị lớn nhất của biểu thức 3 biến P.