Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT thành phố Vinh - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi khảo sát chất lượng học sinh giỏi môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Vinh, tỉnh Nghệ An; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT thành phố Vinh – Nghệ An : + Cho các số nguyên abc thoả mãn ab bc ca 1. Chứng minh rằng 2 2 2 A a b c là số chính phương. Gọi S n là tổng các chữ số của số nguyên dương n khi biểu diễn nó trong hệ thập phân. Biết rằng với bất kỳ số nguyên dương n ta có 0 S n n. Tìm số nguyên dương n thỏa mãn 2 S n n 2023 7. + Tìm các hệ số abc để đa thức 3 2 f x x ax bx c chia hết cho đa thức x 2 và chia cho đa thức 2 x 1 thì dư 3. Cho a b c d e là các số thực dương thỏa mãn a b c d e 4. Tìm giá trị nhỏ nhất của biểu thức a b c d a b c a b P abcde. + Cho tam giác ABC có ba góc nhọn AB AC trung tuyến AM. Kẻ BE vuông góc với AM. Trên đoạn MC lấy điểm F sao cho MFA MEC. Gọi N I lần lượt là trung điểm của đoạn thẳng AF EC AF cắt CE ở O. Chứng minh rằng OEF đồng dạng với OAC. Biết tỷ số 1 2 AM BC tính tỷ số MN MI. Chứng minh rằng NB NC. Cho hình thang cân ABCD AB CD. Gọi M N lần lượt là trung điểm của AB và CD. Trên tia đối của tia DA lấy điểm E, tia EN cắt đoạn thẳng AC tại F. Chứng minh rằng MN là tia phân giác của góc EMF.

Nguồn: toanmath.com

Đọc Sách

Đề HSG cấp huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Lương Tài Bắc Ninh
Nội dung Đề HSG cấp huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Lương Tài Bắc Ninh Bản PDF - Nội dung bài viết Đề thi HSG cấp huyện môn Toán lớp 8 năm 2022-2023 phòng GD&ĐT Lương Tài - Bắc Ninh Đề thi HSG cấp huyện môn Toán lớp 8 năm 2022-2023 phòng GD&ĐT Lương Tài - Bắc Ninh Đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 8 năm học 2022-2023 do phòng Giáo dục và Đào tạo UBND huyện Lương Tài, tỉnh Bắc Ninh tổ chức. Kỳ thi được diễn ra vào thứ Ba ngày 08 tháng 03 năm 2023. Đề thi bao gồm các câu hỏi có đáp án, lời giải chi tiết và thang điểm. Bản đề HSG cấp huyện Toán lớp 8 năm 2022-2023 phòng GD&ĐT Lương Tài - Bắc Ninh gồm các phần sau: Cho đa thức \(2f(x) = ax^2 + bx + c\) với \(a\), \(b\), \(c\) là các số hữu tỉ. Biết rằng \(f(0)\), \(f(1)\), \(f(2)\) có giá trị nguyên. Chứng minh rằng \(2a + b\) có giá trị nguyên. Cho \(a\), \(b\) là hai số nguyên phân biệt lớn hơn 1 thỏa mãn \(2a^2b\) là lũy thừa của một số nguyên tố khác 13 và \(2b^2a\) chia hết cho \(2a^2b\). Chứng minh \(2^3a\) là số chính phương. Cho tam giác ABC có \(B = 2C\); trên tia đối của tia BA lấy điểm D sao cho BD = BC. Qua A kẻ đường thẳng vuông góc với CD cắt BC và CD lần lượt tại M và N. Đường vuông góc với BC tại C cắt AM tại K. Chứng minh rằng: a) Tam giác ABM là tam giác cân và ABC = 2AKC b) \(MA \cdot KN = MN \cdot KA\) c) Tính độ dài ba cạnh của tam giác ABC biết độ dài ba cạnh là ba số tự nhiên liên tiếp. File WORD (dành cho quý thầy, cô) chứa toàn bộ nội dung của đề thi. Hãy chuẩn bị kỹ lưỡng và tự tin đối mặt với thách thức để chinh phục bài thi HSG cấp huyện môn Toán lớp 8!
Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 trường THCS Lê Quý Đôn Bắc Giang
Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 trường THCS Lê Quý Đôn Bắc Giang Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 8 năm 2022 - 2023 trường THCS Lê Quý Đôn - Bắc Giang Đề học sinh giỏi Toán lớp 8 năm 2022 - 2023 trường THCS Lê Quý Đôn - Bắc Giang Chào mừng quý thầy cô và các em học sinh đến với đề khảo sát đội tuyển học sinh giỏi môn Toán lớp 8 năm học 2022 – 2023 trường THCS Lê Quý Đôn, tỉnh Bắc Giang. Kỳ thi sẽ diễn ra vào ngày 11 tháng 02 năm 2023. Đề thi bao gồm các câu hỏi có đáp án và hướng dẫn giải. Dưới đây là một số câu hỏi mẫu trong đề thi: 1. Cho các số thực a, b thỏa mãn: \(a^2 + b^2 = a + b\) và \(ab = \frac{1}{2}\). Tính giá trị của biểu thức \(3a^2 - 4b + \frac{3}{2}\). 2. Cho a và b là các số tự nhiên thoả mãn \(a^2 + b^2 = 2a + 2b\). Chứng minh rằng a và b là các số chính phương và \(a + b\) là số chẵn. 3. Cho x, y, z là các số thực thỏa mãn \(x^2 + y^2 = 3\) và \(y^2 + z^2 = 10\). Tìm giá trị lớn nhất và nhỏ nhất của biểu thức \(Q = xyz\). Mời quý thầy cô và các em học sinh tham gia kỳ thi để thử thách kiến thức và khả năng giải quyết bài toán của mình. Hãy cùng nhau học tập và phát triển trong môn Toán!
Đề học sinh giỏi huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Lục Nam Bắc Giang
Nội dung Đề học sinh giỏi huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Lục Nam Bắc Giang Bản PDF - Nội dung bài viết Đề học sinh giỏi huyện lớp 8 môn Toán năm 2022-2023 Đề học sinh giỏi huyện lớp 8 môn Toán năm 2022-2023 SYTU xin trình bày đến quý thầy cô và các em học sinh lớp 8 đề khảo sát học sinh giỏi cấp huyện môn Toán lớp 8 năm học 2022-2023 do Phòng Giáo dục và Đào tạo huyện Lục Nam, tỉnh Bắc Giang tổ chức. Đề thi bao gồm 30% câu hỏi trắc nghiệm (20 câu - 6 điểm) và 70% câu hỏi tự luận (4 câu - 14 điểm), thời gian làm bài là 120 phút. Kỳ thi sẽ diễn ra vào ngày 09 tháng 02 năm 2023. Trích dẫn một số câu hỏi từ Đề học sinh giỏi huyện Toán lớp 8 năm 2022-2023 phòng GD&ĐT Lục Nam - Bắc Giang: Cho hai số thực x và y thỏa mãn \(x^2 + y^2 = 6\) và \(xy = 2\). Giá trị của biểu thức \(A = xy + 2022\) bằng bao nhiêu? Tam giác ABC vuông tại A có \(AC = 8\) cm, \(BC = 10\) cm. Tỉ số diện tích của tam giác ABD và tam giác ACD là bao nhiêu? Cho hình vuông ABCD có 2 đường chéo AC và BD cắt nhau tại O. Trên cạnh BC lấy N (\(0 < NC < NB\)), đường thẳng vuông góc với ON tại O cắt AB tại M. Gọi E là giao điểm của AN với DC, gọi K là giao điểm của ON với BE. Hãy chứng minh rằng: \(\Delta MON\) vuông cân, \(MN\) // \(BE\), \(OB/NC = CH/OH = NB/KH\). Qua những câu hỏi này, chúng ta có thể thấy rằng Đề học sinh giỏi huyện Toán lớp 8 năm 2022-2023 phòng GD&ĐT Lục Nam - Bắc Giang mang đến những thách thức và cơ hội cho các em học sinh thể hiện khả năng và kiến thức của mình. Chúc các em học sinh đạt kết quả cao trong kỳ thi sắp tới!