Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Phú Mỹ - BR VT

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thị xã Phú Mỹ, tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào ngày 06 tháng 03 năm 2024. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Phú Mỹ – BR VT : + Cho hàm số bậc nhất y mx m 1 (với m là tham số thực, m ≠ 0 và m ≠ 1) có đồ thị là đường thẳng (d). Tìm giá trị m để đường thẳng (d) tạo với 2 trục tọa độ Ox Oy một tam giác có diện tích bằng 2. + Cho nửa đường tròn tâm (O) đường kính AB R 2 và tiếp tuyến Ax (A là tiếp điểm, Ax nằm ở nửa mặt phẳng chứa nửa đường tròn bờ là AB). Trên đoạn OB lấy điểm H, đường thẳng vuông góc với AB tại H cắt nửa đường tròn tại C, tia BC cắt Ax tại D. Gọi M là trung điểm của AD. a) Chứng minh MC là tiếp tuyến của nửa đường tròn. b) Xác định vị trí của điểm H trên đoạn OB để diện tích tam giác OHC lớn nhất. + Cho đường tròn (O R), dây AB cố định AB R 2 và điểm P di động trên dây AB (P AB). Gọi (C R 1) là đường tròn đi qua P và tiếp xúc với đường tròn (O R) tại A (D R2) là đường tròn đi qua P và tiếp xúc với đường tròn (O R) tại B. Hai đường tròn (C R 1) và (D R2) cắt nhau tại điểm thứ hai là M. a) Trong trường hợp P không trùng với trung điểm dây AB. Chứng minh tứ giác OMCD là hình thang cân. b) Chứng minh khi P di động trên dây AB thì M di động trên đường thẳng cố định và đường thẳng MP luôn đi qua một điểm cố định N.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT thành phố Huế
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND thành phố Huế, tỉnh Thừa Thiên Huế. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT thành phố Huế : + Cho biểu thức A. Rút gọn biểu thức A và tìm các giá trị của x để biểu thức A nhận giá trị nguyên. + Một bể nước có hai vòi chảy vào và ở đáy bể có một vòi thứ III để tháo nước ra. Vòi thứ II chảy một mình trong 8 giờ thì đầy bể. Nếu bể đầy, mở vòi thứ III sau 24 giờ thì bể cạn. Lúc đầu bể cạn, người ta mở vòi thứ I và vòi thứ III, 2 giờ sau mở tiếp vòi thứ II thì sau 3 giờ nữa bể đầy. Hỏi vòi thứ I chảy một mình sau bao lâu sẽ đầy bể? + Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Gọi M, N lần lượt là trung điểm của HC và AC. AM cắt HN tại G. Đường thẳng qua M vuông góc với HC và đường thẳng qua N vuông góc với AC cắt nhau tại K.
Đề học sinh giỏi Toán 9 năm 2023 - 2024 trường THCS An Nhơn - Lâm Đồng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2023 – 2024 trường THCS An Nhơn, tỉnh Lâm Đồng; kỳ thi được diễn ra vào ngày 16 tháng 11 năm 2023. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 trường THCS An Nhơn – Lâm Đồng : + Lúc đồng hồ ở nhà chỉ 8h, A rời nhà để ra bến xe buýt. Khi vừa tới bến, A phát hiện bị quên đồ nên lập tức quay về nhà lấy, lúc này đồng hồ ở bến xe chỉ 8h05. Theo đồng hồ ở nhà, A quay lại nhà lúc 8h18. Biết vận tốc di chuyển của A không đổi. Cho biết đồng hồ nhà A nhanh hay chậm hơn đồng hồ ở bến xe? Chênh lệch là bao nhiêu phút? + Một chiếc máy bay đang bay lên với tốc độ 60km/h, đường bay tạo với phương nằm ngang một góc 30 độ. Hỏi sau 1 phút máy bay lên cao thêm được bao nhiêu km theo phương thẳng đứng. + Cho tam giác ABC vuông tại A (AB < AC) có đường cao AH. a) Tính AH nếu biết BH = 9cm và BC = 25cm. b) Gọi M, N lần lượt là hình chiếu của H trên AB và AC. Chứng minh: AM.AB = AH.AC.cosHAC.
Đề HSG Toán 9 vòng 2 năm 2023 - 2024 phòng GDĐT Chương Mỹ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 vòng 2 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Chương Mỹ, thành phố Hà Nội.
Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Chương Mỹ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Chương Mỹ, thành phố Hà Nội. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Chương Mỹ – Hà Nội : + Cho biểu thức: A. 1) Rút gọn biểu thức A. 2) Tìm tất cả các giá trị của x để A nhận giá trị nguyên. 3) Tìm giá trị nhỏ nhất của biểu thức: B = A.(x + 16)/5. + Cho biểu thức E = a3/24 + a2/8 + a/12 với a là một số tự nhiên chẵn. Hãy chứng tỏ E có giá trị nguyên. + Cho tam giác ABC vuông tại A (AB < AC), đường cao AH (H thuộc BC), trên HC lấy D sao cho HA = HD, đường thẳng vuông góc với BC tại D cắt AC tại E. a) Chứng minh: CE.CA = CD.CB. b) Giả sử AB = a, tính BE theo a. c) Gọi M là trung điểm của BE, chứng minh BHM và BEC đồng dạng. HM là phân giác của AHC. d) Tia AM cắt BC tại G. Chứng minh: GB/BC = HD/(AH + HC).