Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 8 môn Toán năm 2022 2023 trường THCS Cao Xuân Huy Nghệ An

Nội dung Đề thi HSG lớp 8 môn Toán năm 2022 2023 trường THCS Cao Xuân Huy Nghệ An Bản PDF - Nội dung bài viết Đề thi HSG lớp 8 môn Toán năm 2022-2023 trường THCS Cao Xuân Huy Nghệ An Đề thi HSG lớp 8 môn Toán năm 2022-2023 trường THCS Cao Xuân Huy Nghệ An Sau đây là bộ đề thi chọn học sinh giỏi cấp trường môn Toán lớp 8 năm học 2022-2023 của trường THCS Cao Xuân Huy, tỉnh Nghệ An. 1. Cho hình vuông ABCD, trên tia đối của tia BA lấy M, trên tia đối của tia CB lấy N sao cho AM = CN. a) Chứng minh MDN vuông cân b) Gọi O là giao điểm của 2 đường chéo AC và BD. Gọi K là trung điểm MN. Chứng minh O, C, K thẳng hàng. 2. Cho tam giác ABC có ba góc nhọn (AB < AC), đường cao AH. Kẻ HD vuông góc với AB (D thuộc AB). Gọi I là trung điểm của AD, trên tia đối của tia BC lấy điểm K sao cho BK = BH. Chứng minh KD vuông góc với HI. 3. Cho các số nguyên a, b, c, d thỏa mãn: a + b = c + d. Chứng minh a^2 + b^2 + c^2 + d^2 là tổng của ba số chính phương. Đây là những câu hỏi thú vị và đòi hỏi sự thông minh, logic của các bạn học sinh lớp 8. Chúc các em thành công trong việc giải quyết các bài toán này!

Nguồn: sytu.vn

Đọc Sách

Đề giao lưu HSG Toán 8 năm 2018 - 2019 phòng GDĐT Yên Lạc - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi giao lưu học sinh giỏi môn Toán 8 năm học 2018 – 2019 phòng GD&ĐT huyện Yên Lạc, tỉnh Vĩnh Phúc. Trích dẫn đề giao lưu HSG Toán 8 năm 2018 – 2019 phòng GD&ĐT Yên Lạc – Vĩnh Phúc : + Cho hình chữ nhật ABCD có AB > AD. Tia phân giác của góc BAD cắt BD và CD lần lượt tại E và K. Trên cạnh BD lấy điểm H sao cho AE là tia phân giác của góc CAH. Gọi F là giao điểm của HK và AB. a) Chứng minh rằng hai tam giác AHD và BHA đồng dạng. b) Giả sử AB = 12cm, AD = 9cm. Tính độ dài đoạn BF. c) Chứng minh rằng ba điểm C, E, F thẳng hằng. + Ban đầu trên bảng có hai số 1 và 4. Một học sinh thực hiện thay đổi như sau: Mỗi lần chọn hai số a và b trên bảng thì viết thêm số c = ab + a + b lên trên bảng. Hỏi số nhỏ nhất không nhỏ hơn 2019 mà có thể xuất hiện được trên bảng là số nào? + Cho biểu thức a) Rút gọn biểu thức P. b) Tìm tất cả các số nguyên x sao cho P có giá trị là số nguyên tố. c) Với x > 0 thì P không nhận những giá trị nào?
Đề khảo sát HSG huyện Toán 8 năm 2018 - 2019 phòng GDĐT Thái Thụy - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát học sinh giỏi huyện môn Toán 8 năm học 2018 – 2019 phòng GD&ĐT Thái Thụy – Thái Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát HSG huyện Toán 8 năm 2018 – 2019 phòng GD&ĐT Thái Thụy – Thái Bình : + Cho hình vuông ABCD, điểm H thuộc cạnh BC (H không trùng với B và C). Trên nửa mặt phẳng bờ là BC không chứa hình vuông ABCD vẽ hình vuông CHIK. Gọi M là giao điểm của DH và BK, N là giao điểm của KH và BD. Chứng minh. + Cho hai số chính phương liên tiếp. Chứng minh rằng tổng của hai số đó cộng với tích của chúng là một số chính phương lẻ. + Cho đa thức 4 3 2 B(x) x ax bx cx d. Biết B(1) = 10; B(2) = 20; B(3) = 30. Tính B(12) + B(-8).
Đề học sinh giỏi huyện Toán 8 năm 2018 - 2019 phòng GDĐT Nậm Nhùn - Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2018 – 2019 phòng GD&ĐT Nậm Nhùn – Lai Châu; kỳ thi được diễn ra vào ngày 13 tháng 01 năm 2019.
Đề giao lưu học sinh giỏi Toán 8 năm 2018 - 2019 phòng GDĐT thành phố Thái Nguyên
Đề giao lưu học sinh giỏi Toán 8 năm 2018 – 2019 phòng GD&ĐT thành phố Thái Nguyên gồm 03 trang với 08 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút.