Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh lớp 8 môn Toán năm 2022 2023 sở GD ĐT Phú Thọ

Nội dung Đề học sinh giỏi cấp tỉnh lớp 8 môn Toán năm 2022 2023 sở GD ĐT Phú Thọ Bản PDF - Nội dung bài viết Sản phẩm Đề học sinh giỏi cấp tỉnh lớp 8 môn Toán năm 2022 2023 sở GD ĐT Phú Thọ Sản phẩm Đề học sinh giỏi cấp tỉnh lớp 8 môn Toán năm 2022 2023 sở GD ĐT Phú Thọ Chúng tôi xin giới thiệu đến quý thầy cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 8 THCS năm học 2022-2023 sở Giáo dục và Đào tạo tỉnh Phú Thọ. Đề thi bao gồm 16 câu trắc nghiệm (tương ứng với 08 điểm) và 04 câu tự luận (tương ứng với 12 điểm), thời gian làm bài 150 phút. Đề thi sẽ có đáp án, lời giải chi tiết và hướng dẫn thang điểm. Trích dẫn một số câu hỏi từ Đề học sinh giỏi cấp tỉnh Toán lớp 8 năm 2022 - 2023 sở GD&ĐT Phú Thọ: Số bàn thắng ghi được trong mỗi trận đấu (không tính loạt sút luân lưu) của một giải bóng đá được ghi lại trong bảng sau: Số bàn thắng 0 1 2 3 4 5 Số trận 4 7 8 9 2 2. Hỏi trong giải đấu đó có thể có nhiều nhất bao nhiêu trận đấu kết thúc với tỉ số hòa (trong 90 phút thi đấu chính thức)? Trong một kì thi Hội khỏe Phù Đổng trường A có 12 học sinh giành được các giải thưởng, biết số học sinh giành ít nhất 2 giải là 7, giành ít nhất 3 giải là 4, và 2 học sinh giành số giải nhiều nhất là 4 giải. Hỏi trường A giành được bao nhiêu giải? Trong tam giác ABC, đường trung tuyến AM cắt BC tại K sao cho AK/KM=1/2. Biết diện tích tam giác ABC bằng 60cm^2, tính diện tích tam giác AKN. File WORD (dành cho quý thầy, cô): [link đến file] Điều này sẽ giúp các em học sinh lớp 8 tự tin ôn tập kiến thức, rèn luyện kỹ năng giải các bài toán và chuẩn bị tốt cho kỳ thi học sinh giỏi cấp tỉnh. Chúc quý thầy cô và các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề Olympic Toán 8 năm 2018 - 2019 phòng GDĐT TX Thái Hòa - Nghệ An
THCS. giới thiệu đến các em học sinh lớp 8 đề Olympic Toán 8 năm 2018 – 2019 phòng GD&ĐT TX Thái Hòa – Nghệ An, nhằm giao lưu và tuyển chọn các em học sinh giỏi Toán 8 đang học tập tại các trường THCS trên địa bàn Thị xã Thái Hòa, tỉnh Nghệ An. Đề Olympic Toán 8 năm 2018 – 2019 phòng GD&ĐT TX Thái Hòa – Nghệ An được biên soạn theo hình thức tự luận với 05 bài toán, học sinh làm bài trong 90 phút. Trích dẫn đề Olympic Toán 8 năm 2018 – 2019 phòng GD&ĐT TX Thái Hòa – Nghệ An : + Cho tam giác ABC vuông tại A, có trung tuyến AM, đường cao AH. Trên cùng nửa mặt phẳng bờ BC kẻ hai tia Ax và Cy cùng vuông góc với BC. Qua A kẻ đường thẳng vuông góc với AM cắt Bx và Cy lần lượt tại P và Q. Chứng minh: a) AP = BP và AQ = CQ. b) PC đi qua trung điểm I của AH. c) Khi BC cố định, BC = 2a, điểm A chuyển động sao cho BAC = 90°. Tìm vị trí điểm H trên đoạn thẳng BC để diện tích tam giác ABH đạt giá trị lớn nhất, tìm giá trị lớn nhất đó. [ads] + Cho phân thức: P = (n^3 + 2n^2 – 1)/(n^3 + 2n^2 + 2n + 1). a) Hãy tình điều kiện xác định và rút gọn phân thức trên. b) Chứng minh rằng nếu n là một số nguyên thì giá trị phân thức tìm được trong câu a luôn là một phân số tối giản. + Tìm đa thức f(x) biết: f(x) chia cho x – 2 dư 5; f(x) chia cho x – 3 dư 7; f(x) chia cho (x – 2)(x – 3) được thương là x^2 -1 và đa thức dư là đa thức bậc nhất đối với x.
Đề học sinh giỏi huyện Toán 8 năm 2018 - 2019 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 8 năm 2018 – 2019 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề học sinh giỏi Toán 8 cấp trường năm 2018 - 2019 trường THCS Sông Trí - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát đội tuyển học sinh giỏi môn Toán 8 cấp trường năm học 2018 – 2019 trường THCS Sông Trí, thị xã Kỳ Anh, tỉnh Hà Tĩnh; đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề học sinh giỏi Toán 8 cấp trường năm 2018 – 2019 trường THCS Sông Trí – Hà Tĩnh : + Cho tứ giác ABCD có 0 0 A 100 B 120. Các tia phân giác của góc C và góc D cắt nhau tại E. Các tia phân giác của các góc ngoài tại C và D cắt nhau tại F. Tính các góc E, F của tứ giác DECF. + Cho tam giác ABC, các điểm D, E, F theo thứ tự chia trong các cạnh AB, BC, CA theo tỷ số 1 : 2, các điểm I, K theo thứ tự chia trong các đoạn thẳng ED, FE theo tỷ số 1 : 2. Chứng minh rằng IK // BC. + Đa thức f x khi chia cho x + 1 có số dư là 2. Khi chia cho x − 2 có số dư là 5. Vậy khi chia f x cho 2 2 x x sẽ có số dư là bao nhiêu?
Đề giao lưu HSG Toán 8 năm 2018 - 2019 phòng GDĐT Yên Lạc - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi giao lưu học sinh giỏi môn Toán 8 năm học 2018 – 2019 phòng GD&ĐT huyện Yên Lạc, tỉnh Vĩnh Phúc. Trích dẫn đề giao lưu HSG Toán 8 năm 2018 – 2019 phòng GD&ĐT Yên Lạc – Vĩnh Phúc : + Cho hình chữ nhật ABCD có AB > AD. Tia phân giác của góc BAD cắt BD và CD lần lượt tại E và K. Trên cạnh BD lấy điểm H sao cho AE là tia phân giác của góc CAH. Gọi F là giao điểm của HK và AB. a) Chứng minh rằng hai tam giác AHD và BHA đồng dạng. b) Giả sử AB = 12cm, AD = 9cm. Tính độ dài đoạn BF. c) Chứng minh rằng ba điểm C, E, F thẳng hằng. + Ban đầu trên bảng có hai số 1 và 4. Một học sinh thực hiện thay đổi như sau: Mỗi lần chọn hai số a và b trên bảng thì viết thêm số c = ab + a + b lên trên bảng. Hỏi số nhỏ nhất không nhỏ hơn 2019 mà có thể xuất hiện được trên bảng là số nào? + Cho biểu thức a) Rút gọn biểu thức P. b) Tìm tất cả các số nguyên x sao cho P có giá trị là số nguyên tố. c) Với x > 0 thì P không nhận những giá trị nào?