Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các bài toán chọn lọc trong hệ tọa độ Oxyz (phần 2) - Nguyễn Xuân Chung

Tài liệu gồm 99 trang, được biên soạn bởi thầy giáo Nguyễn Xuân Chung, tuyển chọn và hướng dẫn phương pháp giải các bài toán chọn lọc trong hệ tọa độ Oxyz (phần 2), giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian. PHẦN 2 : CÁC BÀI TOÁN TẬP HỢP ĐIỂM; GTLN – GTNN. Trong phần 2 này chúng ta nghiên cứu các bài toán có nội dung về quỹ tích và giá trị lớn nhất, giá trị nhỏ nhất. Thông thường: Các bài toán tập hợp điểm cũng chính là các bài toán về min – max bởi vì khi tập hợp điểm thỏa mãn điều kiện nhất định thì sẽ đạt min – max. Tuy nhiên: Bài toán tập hợp điểm thiên về vị trí tương đối và tính toán, còn bài toán về min – max thiên về khảo sát hàm số và bất đẳng thức. Từ đó chúng ta cũng thấy được phương pháp giải có đặc trưng riêng. + Bài toán tập hợp điểm: Thường sử dụng phương pháp véc tơ, các định lý trong tam giác, hình bình hành, sự đối xứng, song song, vuông góc. + Bài toán min – max: Thường sử dụng phương pháp khử dần ẩn (Thêm biến, đổi biến, dồn biến), khảo sát cực trị, bất đẳng thức B.C.S, Mincopxki. Như vậy trong phần này các bài toán có mức độ Vận dụng – Vận dụng cao. Để giải nhanh thì chúng ta không chỉ nắm vững kiến thức mà còn sử dụng một số công thức tính nhanh, kỹ năng sử dụng CASIO. Nếu chỉ làm tự luận thì cũng có kết quả nhưng thi trắc nghiệm thì thời gian không nhiều!. Các em cần tính tổng thời gian của quy trình giải một bài toán khó như sau: + Đọc hiểu đề và yêu cầu của bài toán: Đọc để hiểu nội dung của bài toán là gì? + Tái hiện kiến thức: Trong bài toán chúng ta cần thiết những kiến thức nào? + Xác định các yếu tố cần giải: Chẳng hạn mặt cầu thì cần biết tâm, bán kính. + Biến đổi, tính toán: Đây là quy trình cuối cùng dẫn đến kết quả và trả lời, có nhiều khi phải vẽ hình minh họa thì càng mất nhiều thời gian. Trong phần này, các bài toán có chọn lọc và được biên soạn theo chủ đề: Điểm – mặt phẳng, Điểm – Mặt cầu, Điểm – Đường thẳng, và tổ hợp của các yếu tố trên. Trong phần 1, tôi đã đưa ra một số kiến thức bổ xung và công thức tính nhanh, nên phần này tôi không nêu ra. Tuy nhiên, trong phần này cũng có kiến thức bổ xung hữu ích để giúp chúng ta giải nhanh, từ đó mới tiết kiệm được thời gian toàn bài thi. Đặc biệt trong phần này ta nghiên cứu bài toán mà tạm gọi là “Định luật phản xạ ánh sáng đối với gương phẳng”. I. BỔ XUNG ‐ BÀI TOÁN VỀ TÂM TỈ CỰ. II. BÀI TOÁN VỀ TỔ HỢP VÉC TƠ. III. BÀI TOÁN VỀ QUỸ TÍCH – VỊ TRÍ TƯƠNG ĐỐI. IV. BÀI TOÁN VỀ TỔNG – HIỆU KHOẢNG CÁCH. V. BÀI TOÁN TỔNG HỢP CUỐI PHẦN 2. VI. PHỤ LỤC.

Nguồn: toanmath.com

Đọc Sách

Tổng hợp câu hỏi trắc nghiệm hay chương tọa độ không gian - Nguyễn Quang Hưng, Nguyễn Thành Tiến
Tài liệu gồm 32 trang tổng hợp câu hỏi trắc nghiệm hay và khó chương tọa độ không gian, các bài tập được trích trong đây chủ yếu là những bài được lấy trong các đề thi thử, bài giải được làm dưới cách chi tiết. Trích dẫn tài liệu : + Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 1; 0), B (0; 1; 1), C (1; 0; 1). Tìm hợp tất cả các điểm M trên mặt phẳng Oxz sao cho vtMA.vtMB + vtMC^2 = 2. A. Một đường thẳng B. Một đường tròn C. Một đường elip D. Không xác định được [ads] + Trong không gian với hệ tọa độ xyz, cho điểm A(1;2; -3) và cắt mặt phẳng (P): 2x + 2y – z + 9 = 0. Đường thẳng đi qua A và có véctơ chỉ phương u (3;4; -4) cắt (P) tại B. Điểm M thay đổi trong (P) sao cho M luôn nhìn đoạn AB dưới một góc 90 độ. Khi độ dài MB lớn nhất, đường thẳng MB đi qua điểm nào trong các điểm sau? A. J (-3; 2; 7)   B. H(-2; -1;3) C. K (3; 0; 15)   D. I (-1; -2; 3) + Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): x^2 + (y – 4)^2 + z^2 = 5. Tìm tọa độ điểm A thuộc tia Oy. Biết rằng ba mặt phẳng phân biệt qua A và đôi một vuông góc cắt mặt cầu theo thiết diện là ba hình tròn có tổng diện tích là 11π.
Chuyên đề trắc nghiệm phương pháp tọa độ trong không gian - Ngô Nguyên
Tài liệu gồm 100 trang phân dạng và tuyển chọn các bài tập trắc nghiệm chuyên đề phương pháp tọa độ trong không gian. Nội dung tài liệu gồm: + Chủ đề 1. Các phép toán về tọa độ véc tơ. Xác định điểm – một số tính chất hình học Dạng 1: Chứng minh A, B, C là ba đỉnh tam giác Dạng 2: Tìm D sao cho ABCD là hình bình hành Dạng 3: Chứng minh ABCD là một tứ diện + Chủ đề 2. Phương trình mặt cầu Dạng 1: Biết trước tâm I và bán kính R Dạng 2: Mặt cầu đường kính AB Dạng 3: Mặt cầu tâm I tiếp xúc mặt phẳng (α) Dạng 4: Mặt cầu ngoại tiếp tứ diện ABCD Dạng 5: Mặt cầu đi qua A, B, C và tâm I thuộc (α) Dạng 6: Mặt phẳng tiếp xúc mặt cầu tại A [ads] + Chủ đề 3. Phương trình mặt phẳng Dạng 1. Mặt phẳng (α) đi qua M và có vectơ pháp tuyến n Dạng 2. Mặt phẳng qua 3 điểm A, B, C Dạng 3. Mặt phẳng trung trực đoạn AB Dạng 4. Mặt phẳng (α) qua M và vuông góc đường thẳng d (hoặc AB) Dạng 5. Mp (α) qua M và song song (α): Ax + By + Cz + D = 0 Dạng 6. Mp(α) chứa (d) và song song (d’) Dạng 7. Mp(α) qua M, N và vuông góc (β) Dạng 8. Mp(α) chứa (d) và đi qua M Dạng 9. Mp(α) đi qua M và vuông góc với hai mặt phẳng (β), (γ) cho trước Dạng 10. Mặt Phẳng (α) chứa hai đường thẳng Δ1, Δ2 cắt nhau + Chủ đề 4. Phương trình đường thẳng Dạng 1. Viết phương trình đường thẳng (d) đi qua M và có vectơ chỉ phương u Dạng 2. Đường thẳng d qua A và song song (α) Dạng 3. Đường thẳng (d) qua A và vuông góc mp(α) Dạng 4. PT d’ hình chiếu của d lên (α) Dạng 5. Đường thẳng (d) qua A và vuông góc 2 đường thẳng d1 và d2 Dạng 6. Phương trình đường vuông góc chung của d1 và d2 Dạng 7. PT d qua A và d cắt d1, d2 Dạng 8. PT d // Δ và cắt d1, d2 Dạng 9. PT d qua A và vuông góc với d1, cắt d2 Dạng 10: PT d ⊥ (P) cắt d1, d2
111 câu hỏi trắc nghiệm về mặt phẳng trong Oxyz - Hứa Lâm Phong
Tài liệu gồm 12 trang với 111 câu hỏi trắc nghiệm về mặt phẳng trong Oxyz do thầy Hứa Lâm Phong biên soạn. Trích dẫn tài liệu : + Trong không gian Oxyz, cho mặt phẳng (P): 2x – 2y – z – 4 = 0 và mặt cầu (S): x^2 + y^2 + z^2 – 2x – 4y – 6z – 11 = 0. Mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn có chu vi là? + Cho mặt phẳng (P): 3x + 4y + 12 = 0 và mặt cầu (S): x^2 + y^2 + (z – 2)^2 = 1. Khẳng định nào sau đây là đúng? A. (P) đi qua tâm của mặt cầu (S) B. (P) tiếp xúc với mặt cầu (S) [ads] C. (P) cắt mặt cầu (S) theo một đường tròn và mặt phẳng (P) không qua tâm của (S) D. (P) không có điểm chung với mặt cầu (S) + Khẳng định nào sau đây sai ? A. Nếu n là vectơ pháp tuyến của mặt phẳng thì kn với k khác 0 cũng là vectơ pháp tuyến của mặt phẳng đó. B. Mặt phẳng (P) có phương trình tổng quát là ax + by + cz + d = 0 với a, b, c không đồng thời bằng 0 thì nó có một vectơ pháp tuyến là n(a; b; c). C. Nếu a, b có giá song song hoặc nằm trong mặt phẳng thì tích có hướng của hai vectơ a, b gọi là vectơ pháp tuyến của mặt phẳng. D. Hai mặt phẳng vuông góc với nhau khi và chỉ khi hai vectơ pháp tuyến tương ứng của chúng vuông góc với nhau.
100 câu hỏi trắc nghiệm về tọa độ điểm trong Oxyz - Hứa Lâm Phong
Tài liệu gồm 9 trang với 100 câu hỏi trắc nghiệm về tọa độ điểm trong Oxyz do thầy Hứa Lâm Phong biên soạn. Trích dẫn tài liệu : 1. Trong không gian Oxyz, cho tam giác ABC với A(1;-4;2), B(-3;2;1), C(3;-1;4). Khi đó trọng tâm G của tam giác ABC là? 2. Trong không gian với hệ tọa độ Oxyz, điểm nào sau đây nằm trên trục Oz? 3. Cho ba điểm A(2;0;2), B(1;2;3), C(x;y-3;7). Biết rằng x; y là giá trị để ba điểm A,B,C thẳng hàng. Khi đó tổng x + y bằng? [ads]