Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cương ôn tập học kì 1 môn Toán 8

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương ôn tập học kì 1 môn Toán 8, đề cương gồm có 25 trang được sưu tầm và tổng hợp bởi tác giả Toán Họa, tóm tắt lý thuyết, phân dạng toán và chọn lọc các bài tập Toán 8 giúp học sinh tự rèn luyện, để chuẩn bị cho kỳ thi kiểm tra chất lượng cuối học kì 1 môn Toán 8 sắp tới. Khái quát nội dung đề cương ôn tập học kì 1 môn Toán 8: PHẦN A – ĐẠI SỐ I. LÝ THUYẾT 1) Nắm vững các quy tắc nhân, chia đơn thức với đơn thức, đơn thức với đa thức, phép chia hai đa thức một biến. 2) Nắm vững và vận dụng được các hằng đẳng thức đáng nhớ – các phương pháp phân tích đa thức thành nhân tử. 3) Nắm vững và vận dụng tính chất cơ bản của phân thức, các quy tắc đổi dấu – quy tắc rút gọn phân thức, tìm mẫu thức chung, quy đồng mẫu thức. 4) Thực hiện các phép tính về cộng, trừ, nhân, chia các phân thức đại số. II. BÀI TẬP + Dạng toán 1. Thực hiện phép tính (tính toán và rút gọn). + Dạng toán 2. Toán về phép chia đa thức. + Dạng toán 3. Phân tích đa thức thành nhân tử: Phương pháp đặt nhân tử chung, Phương pháp dùng hằng đẳng thức, Phương pháp nhóm hạng tử, Phương pháp tách hạng tử, Phương pháp thêm bớt hạng tử. + Dạng toán 4. Toán tìm x. + Dạng toán 5. Các bài toán tổng hợp. Bổ sung: Một số dạng toán dành cho học sinh khá – giỏi. [ads] PHẦN B – HÌNH HỌC I. LÝ THUYẾT 1) Nắm vững định nghĩa, tính chất, dấu hiệu nhận biết các tứ giác đã học: Hình thang, hình thang cân, hình bình hành, hình chữ nhật, hình thoi, hình vuông. 2) Nắm vững các tính chất đường trung bình của tam giác, đường trung bình của hình thang. 3) Nắm vững điểm đối xứng qua một đường thẳng, điểm đối xứng qua một điểm, hình đối xứng qua một điểm, hình đối xứng qua một đường thẳng, hình có trục đối xứng, hình có tâm đối xứng. 5) Nắm vững định lý về đường trung tuyến của tam giác vuông. 6) Áp dụng công thức tính diện tích hình chữ nhật, hình vuông, tam giác vuông, tam giác thường. II. BÀI TẬP MỘT SỐ ĐỀ THI THAM KHẢO: Tuyển chọn 15 đề thi HK1 Toán 8 chất lượng, giúp học sinh tự rèn luyện.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề diện tích hình thoi
Tài liệu gồm 14 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề diện tích hình thoi, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. KIẾN THỨC CƠ BẢN + Diện tích tứ giác có hai đường chéo vuông góc bằng nửa tích hai đường chéo. + Diện tích hình thoi bằng nửa tích hai đường chéo hoặc bằng tích của một cạnh với chiều cao. II. MỘT SỐ DẠNG BÀI Dạng 1: Tính diện tích của tứ giác có hai đường chéo vuông góc. Dạng 2: Tính diện tích hình thoi. Dạng 3: Tìm diện tích lớn nhất (nhỏ nhất) của một hình. III. PHIẾU BÀI TỰ LUYỆN
Chuyên đề diện tích hình thang
Tài liệu gồm 08 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề diện tích hình thang, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. TÓM TẮT LÝ THUYẾT + Diện tích hình thang bằng nửa tích của tổng hai đáy với chiều cao. + Diện tích hình bình hành bằng tích của một cạnh với chiều cao ứng với cạnh đó. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA Dạng 1. Tính diện tích hình thang. Phương pháp giải: Sử dụng công thức tính diện tích hình thang. Dạng 2. Tính diện tích hình bình hành. Phương pháp giải: Sử dụng công thức tính diện tích hình bình hành. Dạng 3. Tìm vị trí của một điểm để thỏa mãn một đẳng thức về diện tích. Phương pháp giải: Dùng công thức tính diện tích dẫn đến điều kiện về vị trí điểm, thường liên quan đến khoảng cách từ một điểm đến một đường thẳng. Dạng 4. Tìm diện tích lớn nhất (nhỏ nhất) của một hình. Phương pháp giải: + Kí hiệu maxS là giá trị lớn nhất của biểu thức S, minS là giá trị nhỏ nhất của biểu thức S. + Sử dụng tính chất đường vuông góc ngắn hcm đường xiên. + Nếu diện tích của một hình luôn nhỏ hon hoặc bằng một hằng số M và tồn tại một ví trí của hình để diện tích bằng M thì M là diện tích lớn nhất của hình. Tương tự với trường hợp diện tích nhỏ nhất. B. PHIẾU BÀI TỰ LUYỆN
Chuyên đề diện tích tam giác
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề diện tích tam giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. TÓM TẮT LÝ THUYẾT Diện tích tam giác bằng nửa tích của một cạnh với chiều cao tương ứng. Lưu ý: + Nếu hai tam giác có một cạnh bằng nhau thì tỉ số diện tích hai tam giác đó bằng tỉ số các chiều cao tương ứng. + Nếu hai tam giác có một đường cao bằng nhau thì tỉ số diện tích hai tam giác đó bằng tỉ số các cạnh tương ứng. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA Dạng 1. Tính toán, chứng minh về diện tích tam giác. Phương pháp giải: Sử dụng công thức tính diện tích tam giác. Dạng 2. Tính độ dài đoạn thẳng bằng cách sử dụng công thức tính diện tích tam giác. Dạng 3. Sử dụng công thức tính diện tích để chứng minh các hệ thức. Phương pháp giải: Phát hiện quan hệ về diện tích trong hình rồi sử dụng các công thức tính diện tích. Dạng 4. Tìm vị trí của một điểm để thỏa mãn một đẳng thức về diện tích. Phương pháp giải: Dùng công thức tính diện tích dẫn đến điều kiện về vị trí điểm, thường liên quan đến khoảng cách từ một điểm đến một đường thẳng. Dạng 5. Tìm diện tích lớn nhất hoặc nhỏ nhất của một hình. Phương pháp giải: Để tìm diện tích lớn nhất hoặc nhỏ nhất cùa một hình, ta có thể sử dụng mối quan hệ giữa đường vuông góc và đường xiên. B. PHIẾU BÀI TỰ LUYỆN
Chuyên đề diện tích hình chữ nhật
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề diện tích hình chữ nhật, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. TÓM TẮT LÝ THUYẾT 1. Khái niệm diện tích đa giác. Số đo phần mặt phẳng giới hạn bởi một đa giác được gọi là diện tích đa giác đó. Mỗi đa giác có một diện tích là một số dương xác định. Diện tích đa giác có các tính chất sau: + Hai tam giác bằng nhau thì có diện tích bằng nhau. + Nếu một đa giác được chia thành những đa giác không có điểm trong chung thì diện tích của nó bằng tổng diện tích của những đa giác đó. + Nếu chọn hình vuông có cạnh 1 cm, 1 dm, 1 m … làm đơn vị đo diện tích thì đơn vị diện tích của hình vuông đó tương ứng là 1 cm2, 1 dm2, 1 m2 … 2. Công thức tính diện tích một số hình cơ bản. + Diện tích hình chữ nhật bằng tích hai kích thước của nó. + Diện tích hình vuông bằng bình phương cạnh của nó. + Diện tích tam giác vuông bằng nửa tích hai cạnh góc vuông. + Diện tích tam giác thường bằng nửa tích một cạnh và chiều cao hạ xuống cạnh đó. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA Dạng 1. Tính diện tích đa giác. Phương pháp giải: Sử dụng ba khái niệm diện tích của đa giác. Dạng 2. Diện tích hình chữ nhật. Phương pháp giải: Sử dụng công thức tính diện tích hình chữ nhật. Dạng 3. Diện tích hình vuông. Phương pháp giải: Sử dụng công thức tính diện tích hình vuông. Dạng 4. Diện tích tam giác vuông. Phương pháp giải: Sử dụng công thức tính diện tích tam giác vuông và định lí Pytago. Dạng 5. Tổng hợp các dạng trên. B. PHIẾU BÀI TỰ LUYỆN Dạng 1: Diện tích hình chữ nhật. Dạng 2: Tính độ dài các cạnh của hình chữ nhật. Dạng 3: Diện tích hình vuông. Diện tích tam giác vuông. Dạng 4: Bài tập tổng hợp.