Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kì 1 Toán 11 năm 2023 - 2024 trường THPT 25-10 - Hải Phòng

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra đánh giá cuối học kì 1 môn Toán 11 năm học 2023 – 2024 trường THPT 25-10, thành phố Hải Phòng; đề thi có đáp án mã đề 111 – 112. Trích dẫn Đề cuối học kì 1 Toán 11 năm 2023 – 2024 trường THPT 25-10 – Hải Phòng : + Một quả bóng cao su được thả từ độ cao 7m xuống một mặt sàn. Sau mỗi lần chạm sàn, quả bóng nảy lên độ cao bằng 2 3 độ cao trước đó. Giả sử rằng quả bóng luôn chuyển động vuông góc với mặt sàn và quá trình này tiếp diễn vô hạn lần. Giả sử n u là độ cao (tính bằng mét) của quả bóng sau lần nảy lên thứ n. Chứng minh rằng dãy số un có giới hạn là 0. + Bác An có một ao cá được xây dạng hình hộp chữ nhật (giả sử mặt đáy của ao cá bằng phẳng). Tỉ lệ mực nước lí tưởng trong ao cá so với độ sâu của ao cá để các loài cá trong ao sống lí tưởng là 4 5 vì vậy bác An phải thường xuyên kiểm tra mực nước trong ao. Để kiểm tra mực nước trong ao, bác An dùng thanh gỗ dài 200cm để đo từ mép bờ xuống đáy ao. Sau đó bác rút thanh gỗ lên và đo được phần thanh gỗ ngâm trong nước là 150 cm.Tính tỉ lệ giữa mực nước ở ao và chiều sâu của ao? Mực nước này có lí tưởng cho các loài cá sống không? + Cho hình chóp S.ABCD có đáy ABCD tứ giác có các cặp cạnh không song song, gọi O là giao điểm của AC và BD. Xác định giao tuyến của các mặt phẳng: a) (SBD) và (SAC). b) (SAB) và (SCD).

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Hàn Thuyên TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Hàn Thuyên TP HCM Bản PDF Kỳ thi cuối học kì 1 môn Toán lớp 11 là kỳ thi rất quan trọng đối với các em học sinh lớp 11, điểm số của kỳ thi này tác động lớn đến điểm trung bình môn Toán lớp 11 nói riêng và xếp loại học lực nói chung. Để giúp các em đạt được điểm số cao trong kì thi HK1 Toán lớp 11 sắp tới, Sytu chọn lọc và chia sẻ đến các em bản PDF đề thi + đáp án/đáp số + lời giải chi tiết đề thi học kì 1 Toán lớp 11 năm học 2019 – 2020 trường THPT Hàn Thuyên, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 1 Toán lớp 11 năm 2019 – 2020 trường THPT Hàn Thuyên – TP HCM : + Một hộp chứa 4 quả cầu đỏ, 5 quả cầu xanh và 7 quả cầu vàng. Lấy ngẫu nhiên cùng lúc 4 quả cầu từ hộp đó. Tính xác suất để trong 4 quả cầu được lấy ra có đúng 1 quả cầu màu đỏ và không quá 2 quả cầu màu vàng. + Trong mặt phẳng Oxy, cho hai điểm A(1;3), B(3;0) và đường thẳng có phương trình (d): 3x – 2y + 1 = 0. Tìm ảnh (d’) của (d) qua phép tịnh tiến theo véctơ AB. + Cho tứ diện ABCD có M, N, P lần lượt là trung điểm AB, BC, CD. Gọi G là trọng tâm tam giác BCD; AG cắt MP tại I, AN cắt CM tại J. Chứng minh rằng ba điểm D, I, J thẳng hàng.
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Bùi Thị Xuân TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Bùi Thị Xuân TP HCM Bản PDF Kỳ thi cuối học kì 1 môn Toán lớp 11 là kỳ thi rất quan trọng đối với các em học sinh lớp 11, điểm số của kỳ thi này tác động lớn đến điểm trung bình môn Toán lớp 11 nói riêng và xếp loại học lực nói chung. Để giúp các em đạt được điểm số cao trong kì thi HK1 Toán lớp 11 sắp tới, Sytu chọn lọc và chia sẻ đến các em bản PDF đề thi + đáp án/đáp số + lời giải chi tiết đề thi học kì 1 Toán lớp 11 năm học 2019 – 2020 trường THPT Bùi Thị Xuân, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 1 Toán lớp 11 năm 2019 – 2020 trường THPT Bùi Thị Xuân – TP HCM : + Gọi X là tập hợp các số tự nhiên gồm 3 chữ số khác nhau được lập nên từ các chữ số 1; 2; 4; 6; 8; 9. Lấy ngẫu nhiên 1 phần tử của X. Tính xác suất để chọn được số chia hết cho 2. + Một đa giác có độ dài các cạnh lập thành một cấp số cộng có công sai bằng 4(cm), cạnh nhỏ nhất bằng 6(cm) và chu vi của đa giác bằng 126(cm). Tính độ dài cạnh lớn nhất của đa giác. + Dùng phương pháp quy nạp, hãy chứng minh: un = 10^n – 2n^3 – n + 2 luôn chia hết cho 3 với mọi số nguyên dương n.
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Phú Lâm TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Phú Lâm TP HCM Bản PDF Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán lớp 11, Sytu sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán lớp 11 năm học 2019 – 2020 trường THPT Phú Lâm, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường THPT Phú Lâm – TP HCM : + Một bình đựng 10 viên bi chỉ khác nhau về màu, gồm 4 bi màu đỏ và 6 bi màu vàng. Lấy ngẫu nhiên 3 viên bi .Tính xác suất để: a. Lấy được 1 bi đỏ và 2 bi vàng. b. Trong ba viên bi lấy được có ít nhất 1 bi màu vàng. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, H là giao điểm của AC và BD. Gọi M là trung điểm của cạnh SA, N là trung điểm của cạnh SB. a. Xác định giao tuyến của hai mặt phẳng (SAC) và (SBD). b. Chứng minh MN song song với mặt phẳng (SCD). + Cho cấp số nhân (un) có công bội q = 1/4, số hạng đầu u1 = 2. Tìm số hạng thứ 2, thứ 10 của cấp số nhân đó?
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Nguyễn Thị Minh Khai TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Nguyễn Thị Minh Khai TP HCM Bản PDF Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán lớp 11, Sytu sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán lớp 11 năm học 2019 – 2020 trường THPT Nguyễn Thị Minh Khai, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường THPT Nguyễn Thị Minh Khai – TP HCM : + Lớp 11A14 có 30 học sinh được chia làm 4 tổ: tổ 1 có 6 học sinh, tổ 2 có 7 học sinh, tổ 3 có 8 học sinh, tổ 4 có 9 học sinh. Giáo viên dạy môn Toán của lớp cần chọn ra 10 học sinh để tham dự ngoại khóa.Hỏi có bao nhiêu cách chọn để mỗi tổ có ít nhất 1 học sinh tham dự. + Từ các chữ số của tập hợp M = {1, 2, 3, 4, 5, 6, 7}, người ta tạo ra các số nguyên dương gồm 2 chữ số phân biệt. Tính xác suất để số tạo thành là số lẻ. + Dùng phương pháp qui nạp toán học, chứng minh rằng với mọi số nguyên dương n, ta có: 1.4 + 2.7 + … + n(3n + 1) = n(n + 1)^2.