Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh năng khiếu lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thanh Sơn Phú Thọ

Nội dung Đề học sinh năng khiếu lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thanh Sơn Phú Thọ Bản PDF - Nội dung bài viết Đề học sinh năng khiếu lớp 8 môn Toán năm 2022-2023 phòng GD ĐT Thanh Sơn Phú Thọ Đề học sinh năng khiếu lớp 8 môn Toán năm 2022-2023 phòng GD ĐT Thanh Sơn Phú Thọ Sytu hân hạnh giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh năng khiếu cấp huyện môn Toán lớp 8 năm học 2022 – 2023 của phòng Giáo dục và Đào tạo huyện Thanh Sơn, tỉnh Phú Thọ. Đề thi được thiết kế với hình thức 40% trắc nghiệm khách quan và 60% tự luận. Thời gian làm bài là 120 phút, không tính thời gian giao đề. Đề thi đi kèm đáp án và lời giải chi tiết. Trích dẫn Đề học sinh năng khiếu Toán lớp 8 năm 2022 – 2023 phòng GD&ĐT Thanh Sơn – Phú Thọ: - Thí sinh chỉ cần chọn một đáp án đúng trong phần trắc nghiệm khách quan. Toán cấp huyện Phú Thọ, lớp 8, một bài toán được đưa ra như sau: Cho tam giác ABC, các đường trung tuyến BD và CE. Lấy M, N trên BC sao cho BM = MN = NC. Gọi I là giao điểm của AM và BD, K là giao điểm của AN và CE. Biết BC = 10cm, hỏi độ dài IK là bao nhiêu? - Để lập đội tuyển năng khiếu bóng rổ, nhà trường quy định rằng mỗi thí sinh cần ném 10 quả bóng vào rổ. Mỗi quả bóng ném vào rổ sẽ được cộng 4 điểm, còn nếu ném ra ngoài sẽ bị trừ 2 điểm. Để được chọn vào đội tuyển, một học sinh cần ít nhất bao nhiêu quả bóng ném vào rổ? - Trong một câu hỏi khác, đề thi yêu cầu học sinh chứng minh một số khẳng định về tam giác nhọn ABC và mối liên hệ giữa các đường cao, đường trung tuyến, và tâm đường tròn ngoại tiếp tam giác. Đề thi Toán năm 2022-2023 của phòng GD ĐT Thanh Sơn Phú Thọ không chỉ đánh giá kiến thức mà còn khuyến khích học sinh phát triển kỹ năng logic, tư duy toán học và khả năng giải quyết vấn đề. Chúc các em học sinh đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề HSG Toán 8 cấp trường năm 2023 - 2024 trường THCS Yên Phong - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn đội tuyển học sinh giỏi môn Toán 8 cấp trường năm học 2023 – 2024 trường THCS Yên Phong, tỉnh Bắc Ninh. Trích dẫn Đề HSG Toán 8 cấp trường năm 2023 – 2024 trường THCS Yên Phong – Bắc Ninh : + Xét phép toán a*b = ab + ba với mọi số nguyên dương a b. Tìm số nguyên dương x nếu 2*x = 100. + Chứng minh rằng với mọi số tự nhiên n khác 0 thì số n2 + n + 1 không phải là số chính phương. + Cho hình bình hành ABCD (góc A khác 120°). Vẽ các tam giác đều ABE và ADF nằm ngoài hình bình hành đó. a) Chứng minh tam giác CEF làm tam giác đều. b) Gọi M, I, K theo thứ tự là trung điểm của BD, AF, AE. Tính góc IMK. 2. Cho tam giác ABC vuông tại A đường cao AH. Chứng minh rằng AB + AC < AH + BC.
Đề kiểm tra CLB Toán 8 năm 2023 - 2024 trường THCS Cầu Giấy - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra CLB Văn Hóa môn Toán 8 năm học 2023 – 2024 trường THCS Cầu Giấy, quận Cầu Giấy, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 12 tháng 09 năm 2023; đề thi có đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn Đề kiểm tra CLB Toán 8 năm 2023 – 2024 trường THCS Cầu Giấy – Hà Nội : + Cho đa thức f x ax b với a b là các số nguyên và a ≠ 0. Biết giá trị của đa thức tại x = 1 và x = 3 tỉ lệ với 2 và −2. Chứng minh rằng b chia hết cho a. + Cho tam giác ABC vuông tại A AB AC đường cao AH H BC. Dựng HM AB tại M HN AC tại N. Gọi I là giao điểm của AH với MN. 1. Chứng minh rằng AMH HNA và IM IN. 2. Gọi O là trung điểm của BC, Q là giao điểm của HN và OA. Chứng minh rằng ANQ HMB và BQ MN. 3. Gọi J là giao điểm của BQ và AH. Chứng minh rằng BJO MNC. + Khi trên bảng ghi 2023 số tự nhiên 1 2 3 2023 cần xóa đi ít nhất bao nhiêu số để các số còn lại trên bảng có tính chất không có 3 số nào mà một trong 3 số đó bằng tích của 2 số còn lại.
Đề HSG Toán 8 cấp huyện năm 2022 - 2023 phòng GDĐT Đoan Hùng - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 THCS cấp huyện năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Đoan Hùng, tỉnh Phú Thọ; đề thi hình thức 40% trắc nghiệm + 60% tự luận, thời gian làm bài 120 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề HSG Toán 8 cấp huyện năm 2022 – 2023 phòng GD&ĐT Đoan Hùng – Phú Thọ : + Cho hình vuông ABCD trên cạnh AB lấy điểm E, trên cạnh BC lấy điểm F sao cho AE BF. Kẻ DM vuông góc với EC tại M. a) Chứng minh rằng DM F thẳng hàng. b) Tìm số đo góc BMD khi AE BE. c) Khi E di chuyển trên AB và vẫn luôn thỏa mãn AE BF tìm vị trí của E để diện tích tam giác DEF là nhỏ nhất? + Một rô bốt chuyển động từ A đến B theo cách sau: đi được 5m dừng lại 1 giây, rồi đi tiếp 10m dừng lại 2 giây, rồi đi tiếp 15m dừng lại 3 giây. Cứ như vậy đi từ A đến B hết tất cả thời gian đi và dừng lại là 551 giây. Biết rằng rô bốt luôn chuyển động với vận tốc 2,5m/giây. Khoảng cách từ A đến B dài bao nhiêu mét? + Một hình chữ nhật có chu vi bằng 132m. Nếu tăng chiều dài thêm 8m và giảm chiều rộng đi 4m thì diện tích hình chữ nhật tăng thêm 2 52m. Chiều dài của hình chữ nhật là?
Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Bình Lục - Hà Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra chất lượng học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Bình Lục, tỉnh Hà Nam; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Bình Lục – Hà Nam : + Cho biểu thức A. a) Rút gọn biểu thức A. b) Tính giá trị của biểu thức A tại x thỏa mãn |x + 1| = |−1|. c) Tìm giá trị nguyên của x để biểu thức A có giá trị nguyên. + Cho hình vuông ABCD có độ dài cạnh bằng a, M là một điểm bất kì trên cạnh BC. Tia Ax vuông góc với AM cắt đường thẳng CD tại K. Gọi I là trung điểm của MK. Tia AI cắt đường thẳng CD tại E. Đường thẳng qua M song song với AB cắt AI tại N. a) Tứ giác MNKE là hình gì? Vì sao? b) Chứng minh AM2 = KC. KE. c) Chứng minh chu vi tam giác MEC không đổi khi M di động trên cạnh BC. d) Gọi F là giao điểm của AM với đường thẳng DC. Chứng minh 1/AF2 + 1/AM2 không phụ thuộc vào vị trí điểm M. + Hai vòi nước cùng chảy vào một bể không có nước sau 4 giờ thì đầy bể. Người ta mở 2 vòi chảy trong 2 giờ, sau đó tắt vòi 1 đi, vòi 2 chảy tiếp trong 3 giờ nữa thì bể đầy. Hỏi mỗi vòi chảy một mình trong bao lâu thì đầy bể.