Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh năng khiếu lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thanh Sơn Phú Thọ

Nội dung Đề học sinh năng khiếu lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thanh Sơn Phú Thọ Bản PDF - Nội dung bài viết Đề học sinh năng khiếu lớp 8 môn Toán năm 2022-2023 phòng GD ĐT Thanh Sơn Phú Thọ Đề học sinh năng khiếu lớp 8 môn Toán năm 2022-2023 phòng GD ĐT Thanh Sơn Phú Thọ Sytu hân hạnh giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh năng khiếu cấp huyện môn Toán lớp 8 năm học 2022 – 2023 của phòng Giáo dục và Đào tạo huyện Thanh Sơn, tỉnh Phú Thọ. Đề thi được thiết kế với hình thức 40% trắc nghiệm khách quan và 60% tự luận. Thời gian làm bài là 120 phút, không tính thời gian giao đề. Đề thi đi kèm đáp án và lời giải chi tiết. Trích dẫn Đề học sinh năng khiếu Toán lớp 8 năm 2022 – 2023 phòng GD&ĐT Thanh Sơn – Phú Thọ: - Thí sinh chỉ cần chọn một đáp án đúng trong phần trắc nghiệm khách quan. Toán cấp huyện Phú Thọ, lớp 8, một bài toán được đưa ra như sau: Cho tam giác ABC, các đường trung tuyến BD và CE. Lấy M, N trên BC sao cho BM = MN = NC. Gọi I là giao điểm của AM và BD, K là giao điểm của AN và CE. Biết BC = 10cm, hỏi độ dài IK là bao nhiêu? - Để lập đội tuyển năng khiếu bóng rổ, nhà trường quy định rằng mỗi thí sinh cần ném 10 quả bóng vào rổ. Mỗi quả bóng ném vào rổ sẽ được cộng 4 điểm, còn nếu ném ra ngoài sẽ bị trừ 2 điểm. Để được chọn vào đội tuyển, một học sinh cần ít nhất bao nhiêu quả bóng ném vào rổ? - Trong một câu hỏi khác, đề thi yêu cầu học sinh chứng minh một số khẳng định về tam giác nhọn ABC và mối liên hệ giữa các đường cao, đường trung tuyến, và tâm đường tròn ngoại tiếp tam giác. Đề thi Toán năm 2022-2023 của phòng GD ĐT Thanh Sơn Phú Thọ không chỉ đánh giá kiến thức mà còn khuyến khích học sinh phát triển kỹ năng logic, tư duy toán học và khả năng giải quyết vấn đề. Chúc các em học sinh đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát HSG Toán 8 năm 2015 - 2016 phòng GDĐT Ý Yên - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát HSG Toán 8 năm 2015 – 2016 phòng GD&ĐT Ý Yên – Nam Định; đề thi có đáp án, lời giải và hướng dẫn chấm điểm. Trích dẫn đề khảo sát HSG Toán 8 năm 2015 – 2016 phòng GD&ĐT Ý Yên – Nam Định : + Cho hình vuông ABCD có cạnh bằng a, biết hai đường chéo cắt nhau tại O. Lấy điểm I thuộc cạnh AB, điểm M thuộc cạnh BC sao cho IOM = 90 độ (I và M không trùng với các đỉnh của hình vuông). Gọi N là giao điểm của AM và CD, K là giao điểm của OM và BN. 1) Chứng minh ΔBIO = ΔCMO và tính diện tích tứ giác BIOM theo a. 2) Chứng minh BKM = BCO. 3) Chứng minh 1/CD^2 = 1/AM^2 + 1/AN^2. + Cho tam giác ABC (AB < AC), trọng tâm G. Qua G vẽ đường thẳng d cắt các cạnh AB, AC thứ tự ở D và E. Tính giá trị biểu thức AB/AC + AD/AE. + Tính giá trị của biểu thức P biết x, y thỏa mãn đẳng thức.
Đề chọn HSG Toán 8 năm 2015 - 2016 phòng GDĐT huyện Sơn Dương - Tuyên Quang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề chọn HSG Toán 8 năm 2015 – 2016 phòng GD&ĐT huyện Sơn Dương – Tuyên Quang; đề thi có đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn đề chọn HSG Toán 8 năm 2015 – 2016 phòng GD&ĐT huyện Sơn Dương – Tuyên Quang : + Cho điểm M di động trên đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB vẽ các hình vuông AMCD, BMEF. a) Chứng minh rằng: AE vuông góc BC. b) Gọi H là giao điểm của AE và BC. Chứng minh ba điểm D, H, F thẳng hàng. c) Chứng minh rằng đường thẳng DF luôn đi qua một điểm cố định khi điểm M di động trên đoạn thẳng AB. + Rút gọn biểu thức. + Cho a; b; c là ba số đôi một khác nhau thỏa mãn. Tính giá trị của biểu thức: P.
Đề giao lưu HSG huyện Toán 8 năm 2015 - 2016 phòng GDĐT Cẩm Giàng - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu HSG huyện Toán 8 năm 2015 – 2016 phòng GD&ĐT Cẩm Giàng – Hải Dương; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề giao lưu HSG huyện Toán 8 năm 2015 – 2016 phòng GD&ĐT Cẩm Giàng – Hải Dương : + Cho tam giác ABC nhọn (AB < AC). Các đường cao AE, BF, CG cắt nhau tại H. Gọi M là trung điểm của BC, qua H vẽ đường thẳng a vuông góc với HM, a cắt AB, AC lần lượt tại I và K. a) Chứng minh tam giác ABC đồng dạng với tam giác EFC. b) Qua C kẻ đường thẳng b song song với đường thẳng IK, b cắt AH, AB theo thứ tự tại N và D. Chứng minh NC = ND và HI = HK. c) Chứng minh. + Tìm đa thức f(x) biết rằng: f(x) chia cho x – 2 dư 10, f(x) chia cho x + 2 dư 26, f(x) chia cho x2 – 4 được thương là -5x và còn dư. + Cho a, b, c là 3 cạnh của một tam giác. Chứng minh rằng.
Đề học sinh giỏi huyện Toán 8 năm 2015 - 2016 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 8 năm 2015 – 2016 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 8 năm 2015 – 2016 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho tam giác ABC vuông tại A (AC > AB), đường cao AH (H BC). Trên tia đối của tia HB lấy điểm D sao cho HD = HA. Qua D kẻ đường thẳng vuông góc với BC cắt AC tại E. 1.Chứng minh CD.CB = CA.CE 2. Tính số đo góc BEC. 3. Gọi M là trung điểm của đoạn BE. Tia AM cắt BC tại G. Chứng minh: GB HD BC AH HC. + Cho các số a, b, c thỏa mãn a + b + c = 32. Tìm giá trị nhỏ nhất của biểu thức P = a2 + b2 + c2. + Chứng minh biểu thức: A = 4a(a + b)(a + b + c)(a + c) + b2 c2 0 với mọi a, b, c.