Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Giải toán bằng cách lập phương trình hệ phương trình

Nội dung Giải toán bằng cách lập phương trình hệ phương trình Bản PDF - Nội dung bài viết Giải toán bằng phương pháp lập phương trình - hệ phương trìnhCác loại bài toán chuyển độngBài toán liên quan đến năng suất lao động - công việc Giải toán bằng phương pháp lập phương trình - hệ phương trình Để giải bài toán bằng phương pháp lập phương trình - hệ phương trình, ta cần thực hiện theo các bước sau: Bước 1: Chọn ẩn số và đặt điều kiện nếu cần. Bước 2: Tính các đại lượng theo giả thiết và ẩn số, sau đó lập phương trình hoặc hệ phương trình. Bước 3: Giải phương trình hoặc hệ phương trình đã lập. Bước 4: Kiểm tra điều kiện và đưa ra câu trả lời. Các loại bài toán chuyển động Quãng đường = Vận tốc * Thời gian Vận tốc tỷ lệ nghịch với thời gian và tỷ lệ thuận với quãng đường. Khi hai xe đi ngược chiều gặp nhau: Thời gian đi được bằng nhau và tổng quãng đường bằng quãng đường cần đi. Nếu xe A đuổi kịp xe B, hiệu quãng đường đi được bằng quãng đường giữa A và B. Với Ca nô, tàu xuồng trên dòng nước: Vận tốc = Vận tốc riêng ± Vận tốc dòng nước. Bài toán liên quan đến năng suất lao động - công việc Trong các bài toán này, khối lượng công việc = năng suất lao động * thời gian. Với các bước hướng dẫn và ví dụ cụ thể, học sinh sẽ dễ dàng áp dụng phương pháp lập phương trình để giải các bài toán Toán lớp 9 và ôn thi tuyển sinh vào lớp 10 môn Toán. Bằng cách thực hành nhiều bài tập, học sinh sẽ nâng cao khả năng giải quyết vấn đề và hiểu sâu hơn về các khái niệm Toán học.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề ứng dụng thực tế các tỉ số lượng giác của góc nhọn, thực hành ngoài trời
Tài liệu gồm 13 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề ứng dụng thực tế các tỉ số lượng giác của góc nhọn, thực hành ngoài trời, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 1 bài số 5. A. KIẾN THỨC CẦN NHỚ Vận dụng linh hoạt các tỉ số lượng giác của góc nhọn và kiến thức thực tiễn vào xử lý bài tập liên quan. B. BÀI TẬP MINH HỌA CƠ BẢN NÂNG CAO I. Bài tập củng cố kiến thức bản chất toán. II. Bài tập vận dụng vào thực tế.
Chuyên đề một số hệ thức về cạnh và góc trong tam giác vuông
Tài liệu gồm 52 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề một số hệ thức về cạnh và góc trong tam giác vuông, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 1 bài số 4. A. KIẾN THỨC CẦN NHỚ I. Định lí Trong một tam giác vuông, mỗi cạnh góc vuông bằng: + Cạnh huyền nhân với sin góc đối hoặc nhân với côsin góc kề. + Cạnh góc vuông kia nhân với tang góc đối hoặc nhân với côtang góc kề. Trong hình bên thì: $b = a\sin B = a\cos C$; $c = a\sin C = a\cos B$; $b = c\tan B = c\cot C$; $c = b\tan C = b\cot B.$ II. Giải tam giác vuông Là tìm tất cả các cạnh và góc của tam giác vuông B khi biết hai yếu tố của nó (trong đó ít nhất có một yếu tố về độ dài). B. MỘT SỐ DẠNG BÀI CƠ BẢN VÀ NÂNG CAO C. BÀI TẬP TỰ LUYỆN D. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ
Chuyên đề tỉ số lượng giác của góc nhọn, hệ thức về cạnh và góc trong tam giác vuông
Tài liệu gồm 30 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề tỉ số lượng giác của góc nhọn, hệ thức về cạnh và góc trong tam giác vuông, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 1. A. KIẾN THỨC CẦN NHỚ B. CÁC DẠNG BÀI TẬP CƠ BẢN VÀ NÂNG CAO Dạng 1 : Các bài toán tính toán. 1. Phương pháp giải. + Bước 1: Đặt độ dài cạnh, góc bằng ẩn. + Bước 2: Thông qua giả thiết và các hệ thức lượng lập phương trình chứa ẩn. + Bước 3: Giải phương trình, tìm ẩn số. Từ đó tính độ dài đoạn thẳng hoặc góc cần tìm. 2. Bài tập minh họa. Dạng 2 : Chứng minh đẳng thức, mệnh đề. 1. Phương pháp giải. Đưa mệnh đề về dạng đẳng thức, sử dụng hệ thức lượng và một số kiến thức đã học biến đổi các vế trong biểu thức, từ đó chứng minh các vế bằng nhau. 2. Bài tập minh họa. C. TRẮC NGHỆM RÈN LUYỆN PHẢN XẠ D. HƯỚNG DẪN GIẢI
Chuyên đề một số hệ thức về cạnh và đường cao trong tam giác vuông
Tài liệu gồm 29 trang, tóm tắt lý thuyết, phân dạng và tuyển chọn các bài tập chuyên đề một số hệ thức về cạnh và đường cao trong tam giác vuông, hỗ trợ học sinh trong quá trình học chương trình Hình học 9 chương 1 bài số 1. A. LÝ THUYẾT B. DẠNG BÀI MINH HỌA I. Bài toán và các dạng bài và phương pháp. Dạng 1 : Chứng minh hệ thức. Phương pháp giải: Sử dụng định lý Ta-lét và hệ thức lượng đã học biến đổi các vế, đưa về dạng đơn giản để chứng minh. Dạng 2 : Tìm độ dài đoạn thẳng, số đo góc. Phương pháp giải: + Bước 1: Đặt độ dài cạnh, góc bằng ẩn. + Bước 2: Thông qua giả thiết và các hệ thức lượng lập phương trình chứa ẩn. + Bước 3: Giải phương trình, tìm ẩn số. Từ đó tính độ dài đoạn thẳng hoặc góc cần tìm. Dạng 3 . Bài toán thực tế liên quan. III. Trắc nghiệm rèn phản xạ. III. Phiếu bài tự luyện. IV. Hướng dẫn giải.