Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Bình Định

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bình Định; kỳ thi được diễn ra vào thứ Ba ngày 06 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Bình Định : + Trong hệ toạ độ Oxy, cho các đường thẳng (d): y = ax – 4 và (d1): y = -3x + 2. a) Biết đường thẳng (d) đi qua điểm A(-1;5). Tìm a. b) Tìm toạ độ giao điểm của (d1) với trục hoành, trục tung. Tính khoảng cách từ gốc tọa độ O đến đường thẳng (d1). + Trong kì thi tuyển sinh vào lớp 10 THPT, cả hai trường A và B có tổng số 380 thí sinh dự thi. Sau khi có kết quả, số thí sinh trúng tuyển của cả hai trường là 191 thí sinh. Theo thống kê thì trường A có tỉ lệ trúng tuyển là 55% tổng số thí sinh dự thi của trường A, trường B có tỉ lệ trúng tuyển là 45% tổng số thí sinh dự thi của trường B. Hỏi mỗi trường có bao nhiêu thí sinh dự thi? + Cho tam giác nhọn ABC nội tiếp đường tròn (O) có AB < AC, các đường cao BE, CF của tam giác ABC cắt nhau tại H, đường thẳng EF cắt đường thẳng BC tại K. 1. Chứng minh tứ giác BCEF nội tiếp. 2. Chứng minh hai tam giác KBF và KEC đồng dạng, từ đó suy ra KB.KC = KF.KE. 3. Đường thẳng AK cắt lại đường tròn (O) tại G khác A, chứng minh các điểm A, G, F, E, H cùng thuộc một đường tròn.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán vào THPT lần 1 năm 2024 - 2025 phòng GDĐT Vụ Bản - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2024 – 2025 phòng Giáo dục và Đào tạo huyện Vụ Bản, tỉnh Nam Định; đề thi gồm 02 trang, cấu trúc 20% trắc nghiệm + 80% tự luận, thời gian làm bài 120 phút, có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào THPT lần 1 năm 2024 – 2025 phòng GD&ĐT Vụ Bản – Nam Định : + Ngày 04 06 1783 anh em nhà Mông–gôn–fi-ê (Montgolfier) người Pháp phát minh ra khinh khí cầu dùng không khí nóng. Coi khinh khí cầu này là hình cầu đường kính 11 m. Diện tích mặt khinh khí cầu đó bằng? + Cho hình vuông ABCD có chu vi là 40 cm. Vẽ cung tròn (B BA) cắt đường chéo BD tại M cung tròn (D DM) cắt các cạnh DA DC lần lượt tại E F (hình vẽ bên). Tính diện tích phần hình vuông ABCD ở ngoài hai cung tròn (phần tô đậm trong hình, kết quả làm tròn đến chữ số thập phân thứ hai). + Cho tam giác nhọn ABC AB AC nội tiếp đường tròn tâm O có 2 đường cao BE, CF (E AC F AB) cắt nhau tại H. Tia AO cắt BC tại M và cắt (O) tại N. a) Chứng minh tứ giác BF CE nội tiếp và A F ANC E b) Gọi P Q lần lượt là hình chiếu của M trên AB, AC. Chứng minh HF NCB E và HE MQ HB HF MP NC.
Đề thi thử Toán tuyển sinh lớp 10 năm 2024 - 2025 phòng GDĐT TP Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2024 – 2025 phòng Giáo dục và Đào tạo UBND thành phố Nam Định, tỉnh Nam Định; đề thi hình thức 20% trắc nghiệm khách quan + 80% tự luận, thời gian làm bài 120 phút, có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán tuyển sinh lớp 10 năm 2024 – 2025 phòng GD&ĐT TP Nam Định : + Cho tam giác ABC vuông tại A. Biết 0 AC cm ACB 3 30. Vẽ đường tròn tâm B bán kính BA cắt cạnh BC tại D. Tính diện tích phần mặt phẳng tô đậm ở hình vẽ bên. (Kết quả làm tròn đến chữ số thập phân thứ hai). + Cho tam giác ABC nhọn AB AC. Đường tròn O R đường kính BC cắt các cạnh AB AC; lần lượt tại E D. Các đường thẳng BD và CE cắt nhau tại I. Đường thẳng AI cắt BC tại H. a) Chứng minh tứ giác BHIE và CDIH là các tứ giác nội tiếp. b) Đường thẳng DH cắt đường thẳng CE tại M và cắt đường tròn O R tại điểm thứ hai là N (N khác D). Chứng minh NE AI và IE CM IM CE. + Một hình chữ nhật có chiều dài gấp đôi chiều rộng. Nếu giảm chiều dài 5m và tăng chiều rộng 5m thì được một hình vuông. Chu vi của hình chữ nhật ban đầu là?
Đề thi thử vào 10 chuyên môn Toán (chung) năm 2024 lần 3 trường chuyên ĐHSP Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử tuyển sinh vào lớp 10 THPT chuyên môn Toán (chung) năm 2024 lần 3 trường THPT chuyên ĐHSP Hà Nội, thành phố Hà Nội. Trích dẫn Đề thi thử vào 10 chuyên môn Toán (chung) năm 2024 lần 3 trường chuyên ĐHSP Hà Nội : + Một người gửi tiền vào ngân hàng với lãi suất 0,45%/tháng. Biết rằng, nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo. Người đó phải gửi số tiền ban đầu ít nhất bao nhiêu triệu đồng để số tiền lãi của tháng thứ hai không ít hơn 500 000 đồng? (làm tròn kết quả đến hàng đơn vị của triệu đồng). + Tìm tất cả các số thực m để hai đồ thị hàm số y = 2×2 và y = mx + 2 cắt nhau tại hai điểm phân biệt A(x1;y1) và B(x2;y2) thỏa mãn (y1 + 2)(y2 + 2) + 25x1x2 = 0. + Cho đường tròn (O;R) và dây cung BC cố định (BC < 2R). Điểm A chuyển động trên cung lớn BC sao cho AB < AC, tam giác ABC nhọn và không là tam giác cân. Các tiếp tuyến tại B và C của đường tròn (O;R) cắt nhau tại K. Đường thẳng qua điểm K song song với AB cắt cạnh AC tại I. Đoạn thẳng KI cắt đường tròn (O;R) tại D. Chứng minh rằng 4.1) Tứ giác KOIC nội tiếp một đường tròn. 4.2) ABC KOI. 4.3) Giá trị của biểu thức IA.IC + IO2 không phụ thuộc vào vị trí điểm A.
Đề thi thử Toán vào lớp 10 năm 2024 - 2025 phòng GDĐT Ngô Quyền - Hải Phòng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2024 – 2025 phòng Giáo dục và Đào tạo UBND quận Ngô Quyền, thành phố Hải Phòng; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2024 – 2025 phòng GD&ĐT Ngô Quyền – Hải Phòng : + Để thuận tiện cho việc kinh doanh, bác An thuê một cửa hàng với giá 10 triệu đồng một tháng. Trước khi sử dụng, bác An phải sửa chữa thêm hết số tiền là 20 triệu đồng. Gọi y triệu đồng là tổng số tiền thuê và tiền sửa chữa, x là số tháng thuê cửa hàng. a) Lập công thức tính y theo x b) Hỏi bác An thuê cửa hàng trong bốn năm rưỡi thì hết tổng số tiền là bao nhiêu? + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Quãng đường từ địa điểm A đến địa điểm B có chiều dài là 50(km). Cùng một lúc và trên cùng một quãng đường đó, bạn Nam đi xe máy từ địa điểm A đến địa điểm B, bạn Bắc đi ô tô từ địa điểm B đến địa điểm A, họ gặp nhau sau 30 phút. Tính vận tốc trung bình của mỗi bạn, biết rằng bạn Bắc đi nhanh hơn bạn Nam là10 (km/h)? + Theo đơn đặt hàng, một kỹ sư thiết kế chi tiết máy chất liệu bằng kim loại dạng hình nón bằng cách quay một vòng quanh cạnh AB của ABC vuông tại A (như hình vẽ bên). Tính thể tích của chi tiết kim loại hình nón đó? (lấy pi = 3,14, làm tròn đến chữ số thập phân thứ nhất).