Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tham khảo kỳ thi tốt nghiệp THPT năm 2020 môn Toán

Chiều thứ Năm ngày 07 tháng 05 năm 2020, Bộ Giáo dục và Đào tạo công bố đề tham khảo kỳ thi tốt nghiệp THPT năm 2020 môn Toán lần thứ hai, nhằm giúp các em học sinh khối 12 nắm vững những nội dung Toán cần ôn tập để chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông năm 2020. Đề tham khảo kỳ thi tốt nghiệp THPT năm 2020 môn Toán gồm có 05 trang với 50 câu hỏi và bài toán trắc nghiệm, thời gian làm bài 90 phút, sẽ nhanh chóng cập nhật đáp án và hướng dẫn giải chi tiết sớm nhất có thể. Tìm kiếm có liên quan: Đề minh họa kỳ thi tốt nghiệp THPT năm 2020 môn Toán; Đề minh họa kỳ thi tốt nghiệp THPT năm 2020 môn Toán lần 2. Trích dẫn đề tham khảo kỳ thi tốt nghiệp THPT năm 2020 môn Toán : + Có 6 chiếc ghế được kê thành một hàng ngang. Xếp ngẫu nhiên 6 học sinh, gồm 3 học sinh lớp A, 2 học sinh lớp B và 1 học sinh lớp C, ngồi vào hàng ghế đó, sao cho mỗi ghế có đúng một học sinh. Xác suất để học sinh lớp C chỉ ngồi cạnh học sinh lớp B bằng? + Cho hình chóp S.ABC có đáy là tam giác vuông tại A, AB = 2a, AC = 4a, SA vuông góc với mặt phẳng đáy và SA = a (minh họa như hình bên). Gọi M là trung điểm của AB. Khoảng cách giữa hai đường thẳng SM và BC bằng? [ads] + Cho hình trụ có chiều cao bằng 6a. Biết rằng khi cắt hình trụ đã cho bởi một mặt phẳng song song với trục và cách trục một khoảng bằng 3a, thiết diện thu được là một hình vuông. Thể tích của khối trụ được giới hạn bởi hình trụ đã cho bằng? + Cho hình hộp ABCD.A’B’C’D’ có chiều cao bằng 8 và diện tích đáy bằng 9. Gọi M, N, P và Q lần lượt là tâm của các mặt bên ABB’A’, BCC’B, CDDC và DAA’D’. Thể tích của khối đa diện lồi có các đỉnh là các điểm A, B, C, D, M, N, P và Q bằng? + Để quảng bá cho sản phẩm A, một công ty dự định tổ chức quảng cáo theo hình thức quảng cáo trên truyền hình. Nghiên cứu của công ty cho thấy: nếu sau n lần quảng cáo được phát thì tỉ lệ người xem quảng cáo đó mua sản phẩm A tuân theo công thức P(n). Hỏi cần phát ít nhất bao nhiêu lần quảng cáo để tỉ lệ người xem mua sản phẩm đạt trên 30%?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán tốt nghiệp THPT 2022 lần 1 trường THPT Hàn Thuyên - Bắc Ninh
Ngày … tháng 12 năm 2021, trường THPT Hàn Thuyên, tỉnh Bắc Ninh tổ chức kì thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2021 – 2022 lần thứ nhất. Đề thi thử Toán tốt nghiệp THPT 2022 lần 1 trường THPT Hàn Thuyên – Bắc Ninh mã đề 514 gồm 06 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút (không kể thời gian giao đề), đề thi có đáp án các mã đề 514 515 516 517 518 519 520 521. Trích dẫn đề thi thử Toán tốt nghiệp THPT 2022 lần 1 trường THPT Hàn Thuyên – Bắc Ninh : + Người ta thiết kế một cái tháp gồm 10 tầng theo cách: Diện tích bề mặt trên của mỗi tầng bằng nửa diện tích bề mặt trên của tầng ngay bên dưới và diện tích bề mặt của tầng 1 bằng nửa diện tích bề mặt đế tháp. Biết diện tích bề mặt đế tháp là 12288m2, diện tích bề mặt trên cùng của tháp bằng? + Ban chỉ đạo phòng chống dịch Covid – 19 của sở Y tế Bắc Ninh có 9 người, trong đó có đúng 4 bác sĩ. Chia ngẫu nhiên Ban đó thành 3 tổ, mỗi tổ 3 người để đi kiểm tra công tác phòng dịch của địa phương. Trong mỗi tổ đó chọn ngẫu nhiên 1 người làm tổ trưởng. Xác suất để ba tổ trưởng đều là bác sĩ là? + Một nút chai thủy tinh là khối tròn xoay H một mặt phẳng chứa trục của H cắt H theo một thiết diện như trong hình vẽ bên. Tính thể tích V của H. + Anh A vay ngân hàng 600.000.000 đồng để mua xe ô tô với lãi suât 7,8% một năm. Anh A bắt đầu trả nợ cho ngân hàng theo cách: sau đúng 1 năm kể từ ngày vay anh bắt đầu trả nợ và hai lần trả nợ liên tiếp cách nhau đúng 1 năm. Số tiền trả nợ là như nhau ở mỗi lần và sau đúng 8 năm thì anh A trả hết nợ. Biết rằng lãi suất ngân hàng không thay đổi trong suốt thời gian anh A trả nợ. Số tiền anh A trả nợ ngân hàng trong mỗi lần là: A. 103.618.000 đồng B. 121.800.000 đồng C. 130.000.000 đồng D. 136.776.000 đồng. + Cho lăng trụ đứng ABC A B C có đáy ABC là tam giác vuông tại A. Khoảng cách từ đường thẳng AA đến mặt phẳng BCC B bằng khoảng cách từ điểm C đến mặt phẳng ABC và cùng bằng 1. Góc giữa hai mặt phẳng ABC và ABC bằng. Tính tan khi thể tích khối lăng trụ ABC A B C nhỏ nhất?
Đề thi thử TN THPT 2021 - 2022 môn Toán trực tuyến lần 3 sở GDĐT Hà Tĩnh
Ngày … tháng 12 năm 2021, sở Giáo dục và Đào tạo tỉnh Hà Tĩnh tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2021 – 2022 lần thứ ba theo hình thức thi trực tuyến (thi online trên máy tính / điện thoại). Đề thi thử TN THPT 2021 – 2022 môn Toán trực tuyến lần 3 sở GD&ĐT Hà Tĩnh mã đề 159 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án.
Đề thi KSCL Toán 12 lần 1 năm 2021 - 2022 trường THPT Thiệu Hóa - Thanh Hóa
Đề thi KSCL Toán 12 lần 1 năm 2021 – 2022 trường THPT Thiệu Hóa – Thanh Hóa mã đề 401 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi KSCL Toán 12 lần 1 năm 2021 – 2022 trường THPT Thiệu Hóa – Thanh Hóa : + Cho hàm số y f x có đạo hàm tại 0 x. Khẳng định nào sau đây là khẳng định đúng: A. Nếu hàm số đạt cực tiểu tại 0 x thì 0 f x 0. B. Nếu 0 f x 0 thì hàm số đạt cực trị tại 0 x. C. Nếu hàm số đạt cực tiểu tại 0 x thì 0 f x 0. D. Hàm số đạt cực trị tại 0 x khi và chỉ khi 0 f x 0. + Khối đa diện đều loại p q là khối đa diện có đặc điểm: A. có q mặt là đa giác đều và mỗi mặt có p cạnh. B. có p mặt là đa giác đều và mỗi đỉnh là đỉnh chung của đúng q cạnh. C. có p mặt là đa giác đều và mỗi mặt có q cạnh. D. mỗi mặt là đa giác đều p cạnh và mỗi đỉnh là đỉnh chung của đúng q mặt. + Cho đường thẳng d cố định. Đường thẳng song song với d và cách d một khoảng không đổi. Xác định mặt tròn xoay tạo thành khi quay quanh d. A. Mặt nón. B. Mặt trụ. C. Hình trụ. D. Hình nón. + Cho đa giác đều 21 đỉnh nội tiếp trong đường tròn tâm O. Chọn ngẫu nhiên 3 đỉnh của đa giác đó. Tính xác suất để 3 đỉnh được chọn tạo thành một tam giác cân nhưng không đều. + Ông Nam cần xây một bể đựng nước mưa có thể tích 3 V m 8 dạng hình hộp chữ nhật với chiều dài gấp 4 3 lần chiều rộng, đáy và nắp đổ bê tông, cốt thép; xung quanh xây bằng gạch và xi măng. Biết rằng chi phí trung bình là 980.000 đ/m2 và ở nắp để hở một khoảng hình vuông có diện tích bằng 2 9 diện tích nắp bể. Tính chi phí thấp nhất mà ông Nam phải chi trả (làm tròn đến hàng nghìn). A. 22.000.000 đ. B. 22.770.000 đ. C. 20.965.000 đ. D. 23.235.000 đ.
Đề thi thử TN THPT 2022 môn Toán lần 1 trường Nguyễn Đăng Đạo - Bắc Ninh
Ngày … tháng 11 năm 2021, trường THPT Nguyễn Đăng Đạo, huyện Tiên Du, tỉnh Bắc Ninh tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông 2022 môn Toán lần thứ nhất, kỳ thi được diễn ra trong giai đoạn giữa học kì 1 năm học 2021 – 2022. Đề thi thử TN THPT 2022 môn Toán lần 1 trường Nguyễn Đăng Đạo – Bắc Ninh mã đề 001 gồm 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án. Trích dẫn đề thi thử TN THPT 2022 môn Toán lần 1 trường Nguyễn Đăng Đạo – Bắc Ninh : + Cho hàm số 3 2 y x mx m x 2 3 1 2 có đồ thị là C và đường thẳng d y x 2 S là tập các giá trị m thỏa mãn d cắt C tại 3 điểm phân biệt A B C sao cho diện tích tam giác MBC bằng 2 2 với M(3;1). Tính tổng bình phương các phần tử của S? + Cho hàm số y f x xác định trên tập D. Số M được gọi là giá trị lớn nhất của hàm số y f x trên D nếu A. f x M với mọi x D và tồn tại 0 x D sao cho f x M 0. B. f x M với mọi x D. C. f x M với mọi x D. D. f x M với mọi x D và tồn tại 0 x D sao cho f x M 0. + Mặt phẳng A BC chia khối lăng trụ ABC A B C thành các khối đa diện nào? A. Một khối chóp tam giác và một khối chóp ngũ giác. B. Hai khối chóp tam giác. C. Hai khối chóp tứ giác. D. Một khối chóp tam giác và một khối chóp tứ giác. + Cho hình chóp S.ABC có đáy là tam giác đều cạnh bằng 1. Mặt bên SBC là tam giác nhọn và nằm trong mặt phẳng vuông góc với đáy. Các mặt phẳng SAB SAC lần lượt tạo với đáy các góc 0 60 và 0 30. Gọi là góc giữa hai mặt phẳng SAB và SAC. Tính sin. + Cho hình chóp S ABC có thể tích là V. Gọi M là điểm thuộc cạnh AB sao cho AM x AB. Mặt phẳng qua M và song song với hai đường thẳng SA BC. Mặt phẳng chia hình chóp thành hai phần, trong đó phần chứa điểm B có thể tích là V. Biết 208 343 V V. Tính tổng các giá trị của x thỏa mãn bài toán.