Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Bắc Ninh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Bắc Ninh; đề thi mã đề 482 gồm 20 câu trắc nghiệm (04 điểm – 30 phút) và 04 câu tự luận (06 điểm – 06 phút); đề thi có đáp án và lời giải chi tiết (hướng dẫn được thực hiện bởi tác giả DUC PV). Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Bắc Ninh : + Một người đi xe đạp từ A đến B cách nhau 15km. Khi từ B về A người đó tăng vận tốc thêm 3km/h. Vì vậy, thời gian về ít hơn thời gian đi là 15 phút. Tính vận tốc của người đi xe đạp khi đi từ A đến B. + Cho đường tròn (O; R) và dây MN cố định (MN < 2R). Kẻ đường kính AB vuông góc với dây MN tại E. Lấy điểm C thuộc dây MN (C khác M, N, E). Đường thẳng BC cắt đường tròn (O; R) tại điểm K (K khác B). a) Chứng minh AKCE là tứ giác nội tiếp. b) Chứng minh BM2 = BK.BC. Gọi I là giao điểm của hai đường thẳng AK và MN; D là giao điểm của hai đường thẳng AC và BI. Chứng minh C cách đều ba cạnh của 4DEK. + Chứng minh rằng nếu tất cả các cạnh của một tam giác nhỏ hơn 2 thì diện tích của tam giác đó nhỏ hơn √3.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Phú Yên
Nội dung Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Phú Yên Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2022-2023 sở GD&ĐT Phú Yên Đề tuyển sinh THPT môn Toán năm 2022-2023 sở GD&ĐT Phú Yên Sytu xin được giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo Phú Yên. Kỳ thi sẽ diễn ra vào ngày 14 tháng 06 năm 2022, đề thi bao gồm đáp án và lời giải chi tiết. Một số câu hỏi trong đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Phú Yên: 1. Đường tròn có bao nhiêu trục đối xứng? A. Có vô số trục đối xứng. B. Chỉ có một trục đối xứng. C. Có hai trục đối xứng. D. Không có trục đối xứng nào. 2. Tính diện tích phần không tô màu, giới hạn bởi nửa đường tròn AC, nửa đường tròn AB và nửa đường tròn BC với đường kính lần lượt là 8 cm và 4 cm. 3. Giải bài toán: Phú và Yên cùng tham gia cuộc thi marathon cự li 10 km. Trên quãng đường 4 km đầu tiên, cả hai chạy cùng vận tốc, sau đó Phú tăng vận tốc thêm 2 km/h trong 6 km cuối. Kết quả Phú về đích sớm hơn Yên 6 phút. Hỏi vận tốc chạy của Yên là bao nhiêu?
Đề tuyển sinh môn Toán (chung) năm 2022 2023 sở GD ĐT Quảng Bình
Nội dung Đề tuyển sinh môn Toán (chung) năm 2022 2023 sở GD ĐT Quảng Bình Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chung) năm 2022-2023 sở GD&ĐT Quảng Bình Đề thi tuyển sinh môn Toán (chung) năm 2022-2023 sở GD&ĐT Quảng Bình Sytu xin chào đến quý thầy cô giáo và các em học sinh lớp 9! Dưới đây là đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán (chung) năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Quảng Bình. Kỳ thi sẽ diễn ra vào ngày 07 tháng 06 năm 2022, với đề thi có đáp án, lời giải chi tiết và thang điểm. Trích đề tuyển sinh lớp 10 môn Toán (chung) năm 2022-2023 sở GD&ĐT Quảng Bình: Cho tam giác ABC nhọn với AB > AC. Các đường cao BM, CN cắt nhau tại H. a) Chứng minh tứ giác AMHN nội tiếp. b) Gọi D là giao điểm của AH và BC. Chứng minh AD là phân giác của góc MDN. c) Đường thẳng qua D và song song với MN cắt AB, CN lần lượt tại I và J. Chứng minh D là trung điểm của IJ. Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = mx + 1/2 đi qua điểm (1,4). Tìm tất cả các giá trị của m để phương trình (1) có hai nghiệm x thỏa mãn 2 2 1 2 1 2 x x x x 3 1. Hy vọng những thông tin trên sẽ giúp các em học sinh chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em thành công! Đừng quên học tập chăm chỉ và tự tin vào khả năng của mình.
Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Sơn La
Nội dung Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Sơn La Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT môn Toán năm 2022 - 2023 sở GD&ĐT Sơn La Đề thi tuyển sinh THPT môn Toán năm 2022 - 2023 sở GD&ĐT Sơn La Chúng tôi xin giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 - 2023 của sở Giáo dục và Đào tạo Sơn La. Kỳ thi sẽ diễn ra vào ngày ... tháng 06 năm 2022. Trích đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 của sở GD&ĐT Sơn La: Cho tam giác ABC nhọn nội tiếp đường tròn tâm O. Các đường cao AE, BF cắt nhau tại trực tâm H của tam giác, AO cắt đường tròn tại điểm thứ hai M. a) Chứng minh tứ giác EHFC nội tiếp được đường tròn. b) Chứng minh tứ giác BHCM là hình bình hành. c) Chứng minh CO // EF. Xác định đường thẳng d: y = ax + b biết rằng d đi qua điểm A (3, 2) cắt trục tung tại điểm có tung độ nguyên dương, cắt trục hoành tại điểm có hoành độ là một số nguyên tố. Một người đi xe máy từ A đến B với vận tốc 30 km/h; lúc trở về người đó đi với vận tốc 40 km/h nên thời gian lúc về ít hơn thời gian lúc đi 30 phút. Tính quãng đường AB.
Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Tuyên Quang
Nội dung Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Tuyên Quang Bản PDF - Nội dung bài viết Đề Tuyển Sinh THPT Môn Toán Năm 2022 - 2023 Sở GD&ĐT Tuyên Quang Đề Tuyển Sinh THPT Môn Toán Năm 2022 - 2023 Sở GD&ĐT Tuyên Quang Sytu trân trọng giới thiệu đến quý thầy cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 - 2023 sở Giáo dục và Đào tạo Tuyên Quang. Kỳ thi được tổ chức vào ngày ... tháng 06 năm 2022. Trích dẫn một số câu hỏi trong đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GD&ĐT Tuyên Quang: 1. Khẳng định nào dưới đây sai? A. Đường kính vuông góc với một dây thì hai đầu mút của dây đó đối xứng với nhau qua đường kính đó. B. Đường kính vuông góc với một dây thì đi qua trung điểm của dây đó. C. Đường kính đi qua trung điểm của một dây thì luôn vuông góc với dây đó. D. Đường kính đi qua trung điểm của một dây không đi qua tâm thì vuông góc với dây đó. 2. Trên nửa đường tròn O đường kính AB lấy điểm C sao cho AC = BC. Gọi D là trung điểm của đoạn thẳng OA. Đường thẳng qua D và vuông góc với AB cắt AC tại E. Chứng minh rằng: a) Tứ giác BCED nội tiếp được. b) Đường thẳng BC đi qua trung điểm của AD. 3. Cho hai đường tròn có bán kính lần lượt là 8cm và 3cm, cả hai đường tròn cắt nhau tại điểm A. Một đường thẳng đi qua tâm của đường tròn lớn và tiếp xúc với đường tròn nhỏ tại B. Chứng minh rằng tam giác AOB vuông tại O. Hãy chuẩn bị kỹ càng và tự tin để đối mặt với bài thi sắp tới. Chúc các em học sinh thành công!