Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 lần 1 năm 2023 - 2024 phòng GDĐT Xuân Trường - Nam Định

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Xuân Trường, tỉnh Nam Định; đề thi cấu trúc 20% trắc nghiệm + 80% tự luận, thời gian làm bài 120 phút; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào 10 lần 1 năm 2023 – 2024 phòng GD&ĐT Xuân Trường – Nam Định : + Khoảng cách đường bộ từ cầu Lạc Quần đến cầu Đò Quan dài 25 km. Xe máy thứ nhất đi từ cầu Lạc Quần đến cầu Đò Quan, cùng một lúc xe máy thứ hai đi từ cầu Đò Quan về cầu Lạc Quần, sau 25 phút hai xe gặp nhau. Mỗi giờ xe thứ hai đi chậm hơn xe thứ nhất 10 km. Vận tốc xe thứ nhất là: A. 35km/h B. 30km/h C. 25km/h D. 40km/h. + Cho tam giác ABC vuông cân ở A, đường cao AH. Vẽ đường tròn tâm O đường kính BH cắt AB tại M. Biết AB cm 2 3. Tính diện tích của hình được giới hạn bởi tam giác ABC và hình tròn (O) đường kính BH (phần tô đậm trong hình bên, kết quả làm tròn đến chữ số thập phân thứ nhất). + Cho tam giác nhọn ABC AB AC các đường cao AD, BE, CF cắt nhau tại H. Vẽ đường tròn (O) đường kính HC. Trên cung EC nhỏ của đường tròn (O), lấy điểm I sao cho IC IE DI cắt CE tại N. a) Chứng minh tứ giác AFHE nội tiếp và AEF DIC. b) Gọi M là giao điểm của FE và CI, đường thẳng HM cắt (O) tại điểm thứ hai là K, KN cắt (O) tại điểm thứ hai là G, MN cắt BC tại T. Chứng minh MN // AB và ba điểm H, T, G thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử vào lớp 10 môn Toán 2018 phòng GD và ĐT Hai Bà Trưng - Hà Nội
Đề thi thử vào lớp 10 môn Toán 2018 phòng GD và ĐT Hai Bà Trưng – Hà Nội được biên soạn nhằm giúp các em học sinh lớp 9 đang học tập tại các trường THCS trên địa bàn quận Hai Bà Trưng, Hà Nội nắm được dạng đề và rèn luyện để chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 THPT trong thời gian sắp tới, đề thi có lời giải chi tiết .
Đề thi thử vào lớp 10 môn Toán 2018 trường THCS Thái Thịnh - Hà Nội
Đề thi thử vào lớp 10 môn Toán 2018 trường THCS Thái Thịnh – Hà Nội được biên soạn theo hình thức tự luận với 5 bài toán, thời gian làm bài 120 phút, kỳ thi được diễn ra vào ngày 15 tháng 05 năm 2018, đề nhằm giúp các em học sinh lớp 9 làm quen với hình thức thi cử, nắm được cấu trúc đề, các dạng toán thường gặp trong đề tuyển sinh vào lớp 10 môn Toán, để các em rèn luyện, chuẩn bị cho kỳ thi vượt cấp sắp tới, đề thi có đáp án và lời giải chi tiết .
Đề thi thử vào lớp 10 môn Toán năm 2018 - 2019 trường THCS Mỹ Xá - Nam Định
Đề thi thử vào lớp 10 môn Toán năm 2018 – 2019 trường THCS Mỹ Xá – Nam Định gồm 2 trang với 2 phần: phần trắc nghiệm khách quan gồm 8 câu hỏi, phần tự luận gồm 5 bài toán, thời gian làm bài 120 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi thử vào lớp 10 môn Toán năm 2018 – 2019 : + Cho hình chữ nhật ABCD có AB = 3cm, CB = 4cm. Quay hình chữ nhật đó một vòng quanh cạnh AB được một hình trụ. Thể tích hình trụ đó bằng? + Giá trị của m để đường thẳng y = x – 2 và đường thẳng y = 2x + m – 1 cắt nhau tại một điểm nằm trên trục tung là? [ads] + Cho tứ giác ABCD nội tiếp đường tròn đường kính AD. Đường chéo AC và BD cắt nhau tại E. Gọi F là hình chiếu của E trên AD. Đường thẳng CF cắt đường tròn tại điểm thứ hai là M (M khác C). Gọi N là giao điểm của BD và CF. 1. Chứng minh tứ giác ABEF và tứ giác CDFE là các tứ giác nội tiếp. 2. Chứng minh FA là tia phân giác của góc BFM và BE.DN = EN.BD. 3. Gọi K là trung điểm của DE. Chứng minh tứ giác BCKF nội tiếp.
Đề thi thử vào lớp 10 môn Toán THPT năm 2018 phòng GD và ĐT Giao Thủy - Nam Định
Đề thi thử vào lớp 10 môn Toán THPT năm 2018 phòng GD và ĐT Giao Thủy – Nam Định gồm 8 câu hỏi trắc nghiệm và 5 bài toán tự luận, thời gian làm bài 120 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi thử vào lớp 10 môn Toán THPT năm 2018 : + Cắt một hình cầu bởi một mặt phẳng cách tâm hình cầu 4dm. Biết bán kính hình cầu bằng 5dm. Chu vi mặt cắt bằng? + Cho tam giác IAB vuông tại I. Quay tam giác IAB một vòng quanh cạnh IA cố định ta được một hình? [ads] + Trong mặt phẳng tọa độ Oxy cho Parabol 2 (P): y = x^2 và đường thẳng (d): y = 4x + 1 – m. 1) Cho m = 4, hãy tìm tất cả các hoành độ giao điểm của (d) và (P). 2) Tìm tất cả các giá trị của m để (d) cắt (P) tại hai điểm có tung độ là y1; y2 thỏa mãn √y1.√y2 = 5.