Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG cấp huyện Toán 9 năm 2019 - 2020 phòng GDĐT Như Xuân - Thanh Hoá

Thứ Ba ngày 22 tháng 10 năm 2019, phòng Giáo dục và Đào tạo huyện Như Xuân, tỉnh Thanh Hóa tổ chức kỳ thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2019 – 2020, nhằm tuyển chọn các em học sinh lớp 9 đang học tập tại các trường Trung học Cơ sở trên địa bàn tỉnh Thanh Hóa, có thành tích học tập môn Toán xuất sắc, để tuyên dương và bổ sung vào đội tuyển học sinh giỏi Toán 9 của tỉnh nhà. Đề thi HSG cấp huyện Toán 9 năm học 2019 – 2020 phòng GD&ĐT Như Xuân – Thanh Hoá gồm có 05 bài toán, đề thi gồm 01 trang, dạng tự luận, thời gian làm bài 150 phút. [ads] Trích dẫn đề thi HSG cấp huyện Toán 9 năm 2019 – 2020 phòng GD&ĐT Như Xuân – Thanh Hoá : + Tìm số tự nhiên n sao cho A = n^2 + 3n + 7 là số chính phương. + Tìm tất cả các tam giác vuông có độ dài cạnh là số nguyên và số đo diện tích bằng số đo chu vi. + Cho tam giác ABC vuông ở A, AH vuông góc BC, HE vuông góc AB, HF vuông góc AC (H thuộc BC, E thuộc AB, F thuộc AC). a) Chứng minh rằng: AE.AB = AF.AC và BH = BC.(cosB)^2. b) Chứng minh rằng: AB^3/AC^3 = BE/CF. c) Chứng minh rằng: (BC^2)^1/3 = (CF^2)^1/3 + (BE^2)^1/3. d) Cho BC = 2a. Tìm giá trị lớn nhất của diện tích tứ giác AEHF.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Triệu Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi lớp 9 cấp huyện môn Toán năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Triệu Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào thứ Sáu ngày 31 tháng 12 năm 2021.
Đề chọn HSG Toán 9 đợt 1 năm 2021 - 2022 phòng GDĐT Ứng Hòa - Hà Nội
Đề chọn HSG Toán 9 đợt 1 năm 2021 – 2022 phòng GD&ĐT Ứng Hòa – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề chọn HSG Toán 9 đợt 1 năm 2021 – 2022 phòng GD&ĐT Ứng Hòa – Hà Nội : + Cho các hàm số bậc nhất. Với giá trị nào của m thì đường thẳng d1 cắt hai đường thẳng d2 và d3 lần lượt tại hai điểm A và B sao cho A có hoành độ âm còn B có hoành độ dương. + Cho ABC có ba góc nhọn cân tại A. Các đường cao AD, BE cắt nhau tại H. 1. Chứng minh: ABC đồng dạng DEC. 2. Chứng minh: cosABC. + Trong hình vuông cạnh bằng 1 cho 33 điểm bất kỳ. Chứng minh rằng trong các điểm đã cho có thể tìm được 3 điểm lập thành tam giác có diện tích không lớn hơn 1/32.
Đề học sinh giỏi huyện Toán 9 năm 2021 - 2022 phòng GDĐT Nam Đàn - Nghệ An
Đề học sinh giỏi huyện Toán 9 năm 2021 – 2022 phòng GD&ĐT Nam Đàn – Nghệ An được biên soạn theo hình thức đề thi tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 150 phút.
Đề chọn học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Anh Sơn - Nghệ An
Đề chọn học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT Anh Sơn – Nghệ An gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề chọn học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT Anh Sơn – Nghệ An : + Cho ba số thực dương a, b, c thỏa mãn: ab + bc + ca = 1. Chứng minh rằng. + Cho tam giác ABC có AB < AC; BAC = 45°; vẽ các đường cao BM và CN. a) Chứng minh: AM.AC = AN.AB. b) Chứng minh BC2 = 2.MN2. c) Từ A kẻ đường thẳng song song với BM cắt đường thẳng BC tại Q. Chứng minh. + Bên trong hình vuông có cạnh bằng 1cm lấy 51 điểm phân biệt không có ba điểm nào thẳng hàng, chứng minh tồn tại ít nhất 3 điểm trong 51 điểm đó tạo thành một tam giác có diện tích bé hơn 0,04 cm2.