Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi kiến thức lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Quận 1 TP HCM

Nội dung Đề thi kiến thức lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Quận 1 TP HCM Bản PDF - Nội dung bài viết Đề thi kiến thức lớp 8 môn Toán năm 2016 - 2017 phòng GD ĐT Quận 1 TP HCM Đề thi kiến thức lớp 8 môn Toán năm 2016 - 2017 phòng GD ĐT Quận 1 TP HCM Ngày 23 tháng 03 năm 2017, phòng Giáo dục và Đào tạo Quận 1, thành phố Hồ Chí Minh đã tổ chức kỳ thi kiến thức ngày hội học sinh cấp Trung học Cơ sở môn Toán lớp 8 năm học 2016 - 2017. Đề thi kiến thức Toán môn Toán lớp 8 năm 2016 - 2017 của phòng GD&ĐT Quận 1 - TP HCM đã được công bố với đáp án và lời giải chi tiết. Trong đề thi, có một số câu hỏi thú vị như sau: + Đề bài 1: Khối lớp 8 của một trường THCS có bốn lớp 81, 82, 83 và 84. Trung bình cộng số học sinh của bốn lớp là 39,5. Nếu chuyển 4 em từ lớp 81 sang lớp 82 thì số học sinh của hai lớp bằng nhau. Số học sinh lớp 83 bằng trung bình cộng số học sinh hai lớp 81 và 82. Số học sinh lớp 84 bằng trung bình cộng số học sinh hai lớp 82 và 83. Hãy tìm số học sinh ban đầu của mỗi lớp. + Đề bài 2: Cho tam giác nhọn ABC, BD và CE là hai đường cao cắt nhau tại H. a) Chứng minh rằng: tam giác HED đồng dạng với tam giác HBC. b) Gọi M là trung điểm của cạnh BC, N là điểm trên tia đối của tia HA. Đường thẳng qua N vuông góc với MH cắt AB, AC lần lượt tại I, K. Chứng minh rằng: N là trung điểm của IK. + Đề bài 3: Cho tam giác đều ABC, điểm M nằm trong tam giác ABC. Vẽ MD vuông góc với BC tại D, ME vuông góc với AC tại E, MF vuông góc với AB tại F. Đặt MD = x, ME = y, MF = z. a) Chứng minh rằng x + y + z không phụ thuộc vào vị trí của điểm M. b) Xác định vị trí của điểm M sao cho tổng bình phương x2 + y2 + z2 đạt giá trị nhỏ nhất. Đề thi này không chỉ giúp học sinh rèn luyện và kiểm tra kiến thức mà còn khuyến khích họ tìm hiểu sâu và áp dụng lý thuyết vào thực hành. Chắc chắn rằng đề thi sẽ đem lại nhiều trải nghiệm bổ ích cho các em học sinh.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 8 năm 2023 - 2024 trường THCS Khánh Yên - Lào Cai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp trường môn Toán 8 năm học 2023 – 2024 trường THCS Khánh Yên, huyện Văn Bàn, tỉnh Lào Cai. Trích dẫn Đề học sinh giỏi Toán 8 năm 2023 – 2024 trường THCS Khánh Yên – Lào Cai : + Trong trò chơi rung chuông vàng trên sàn đấu có 120 học sinh được đánh số thứ tự từ 1 đến 120. Chọn ngẫu nhiên một học sinh để phỏng vấn. Tính xác suất của biến cố. 1. A : “Học sinh được chọn mang số tròn chục”. 2. B: “ Học sinh được chọn mang số chia cho 17 dư 2 và chia cho 3 dư 1”. + Để đánh máy một bản thảo cuốn sách gồm 71 trang, hai cô nhân viên văn phòng Nhung và Hoa cùng đánh máy trong 4 giờ, ngoài ra cô Hoa còn phải làm thêm 2,5 giờ nữa mới xong. Nếu cả cô Nhung và cô Hoa cùng đánh máy trong 4,75 giờ thì để hoàn thành công việc, cô Hoa chỉ cần làm thêm 45 phút nữa. Hỏi mỗi cô đánh máy riêng một mình thì trong một giờ đánh máy được bao nhiêu trang. + Bạn Hà làm một cái lồng đèn hình quả trám (xem hình bên) là hình ghép từ hai hình chóp tứ giác đều có cạnh đáy 20 cm, cạnh bên 32 cm, khoảng cách giũa hai đỉnh của hai hình chóp là 30 cm. a) Tính thể tích của lồng đèn. b) Bạn Hà muốn làm 50 cái lồng đèn như này, cần phải chuẩn bị bao nhiêu mét thanh tre? (mối nối giữa các que tre có độ dài không đáng kể).
Đề kiểm tra HSG Toán 8 năm 2023 - 2024 phòng GDĐT Ninh Giang - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra đội tuyển học sinh giỏi môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Ninh Giang, tỉnh Hải Dương; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề kiểm tra HSG Toán 8 năm 2023 – 2024 phòng GD&ĐT Ninh Giang – Hải Dương : + Cho tam giác ABC nhọn AB < AC. Các đường cao AD, BE, CF cắt nhau tại H D BC E AC F. a) Chứng minh AF.AB = AE.AC. b) Qua D kẻ đường thẳng song song với EF cắt AB tại M, cắt CF tại N. Chứng minh FEH DEH và DM = DN. + Cho tam giác ABC nhọn (AB < AC). Các đường cao BM, CN cắt nhau tại I M AC N AB. Gọi E là trung điểm BC, IE cắt MN tại F. Chứng minh FM IM FN IN. + Tìm số nguyên dương n sao cho 2 An 4 14 7 là số chính phương.
Đề học sinh giỏi Toán 8 năm 2023 - 2024 phòng GDĐT Nghĩa Lộ - Yên Bái
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 THCS năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND Thị Xã Nghĩa Lộ, tỉnh Yên Bái. Trích dẫn Đề học sinh giỏi Toán 8 năm 2023 – 2024 phòng GD&ĐT Nghĩa Lộ – Yên Bái : + Cho hình bình hành ABCD trong đó có A > 90° và AB > BC. Qua C dựng đường thẳng vuông góc với BC rồi lấy các điểm M và N sao cho CM = CN = CB. Qua C dựng đường vuông góc với CD rồi lấy các điểm P và Q sao cho CP = CQ = CD (M và P ở trong cùng nửa mặt phẳng với D có bờ BC). Chứng minh: a) MPNQ là hình bình hành. b) AC vuông góc MP. + Tìm số nguyên n sao cho n3 – 2 chia hết cho n – 2. + Cho n là số nguyên tố. Hỏi n10 – 1 là số nguyên tố hay hợp số? Vì sao?
Đề học sinh giỏi Toán 8 năm 2023 - 2024 phòng GDĐT Tiền Hải - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chất lượng học sinh giỏi cấp huyện môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Tiền Hải, tỉnh Thái Bình. Trích dẫn Đề học sinh giỏi Toán 8 năm 2023 – 2024 phòng GD&ĐT Tiền Hải – Thái Bình : + Cho hàm số y = mx + 4m + 3 (m là tham số) có đồ thị là đường thẳng (d). Tìm điểm cố định mà đường thẳng (d) đi qua với mọi giá trị của m. + Cho tam giác nhọn ABC, các đường cao BE, CF. Gọi M là trung điểm của cạnh BC. a) Chứng minh MEF cân và AEF = ABC. b) Trên đoạn BE lấy điểm Q sao cho BFQ = CFE. Chứng minh BFQ đồng dạng với CFE và EF.BC + BF.CE = BE.CF. + Cho tam giác nhọn ABC. Gọi N là điểm bất kì trên đoạn thẳng BC (N khác B và C). Gọi các điểm H, K lần lượt là hình chiếu vuông góc của N trên cạnh AB, AC. Xác định vị trí của điểm N để đoạn thẳng HK có độ dài nhỏ nhất.