Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 năm 2022 - 2023 phòng GDĐT Nghi Lộc - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Nghi Lộc, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn đề thi thử Toán vào lớp 10 năm 2022 – 2023 phòng GD&ĐT Nghi Lộc – Nghệ An : + Trong đợt dịch Covid-19 vừa qua để ủng hộ cho đội tình nguyện ra quân vì môi trường xanh-sạch- đẹp, mẹ có nhờ Ngọc ra cửa hàng tạp hóa để mua 4 chai nước sát khuẩn và 3 hộp khẩu trang hết 449 nghìn đồng. Tính giá tiền của mỗi chai nước sát khuẩn và giá tiền mỗi hộp khẩu trang mà Ngọc đã mua. Biết giá tiền của 1 chai nước sát khuẩn hơn giá tiền 1 hộp khẩu trang là 16 nghìn đồng. + Cho điểm M nằm ngoài đường trong (O; R) sao cho OM = 3R. Qua M vẽ hai tiếp tuyến MA, MB với đường tròn (O; R) (A, B là các tiếp điểm) và kẻ cát tuyến MCD của đường tròn (O; R) cắt đoạn thẳng OA (C nằm giữa M và D). Gọi I là trung điểm của dây cung CD và H là giao điểm của AB với OM. a) Chứng minh: Tứ giác AIOB là tứ giác nội tiếp đường tròn, Xác định tâm của đường tròn này. b) Chứng minh: MC.MD MH.MO c) Gọi E, F lần lượt là hình chiếu của C lên MA và MB. Tìm giá trị lớn nhất của tích CE.CF khi cát tuyến MCD quay quanh điểm M. + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): 2 y mx m 2 1 và parabol: (P): 2 y x a) Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt. b) Tìm giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ 1 2 x x thỏa mãn : 1 2 12 11 2 1.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Bạc Liêu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bạc Liêu; kỳ thi được diễn ra vào ngày 31 tháng 05 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Bạc Liêu : + Cho biểu thức H = n2 – n – 5. Tìm tất cả các số nguyên dương n để H là một số chính phương. Tìm các số nguyên x, y sao cho: x(x + y)2 = y – 1. + Cho tam giác ABC đều nội tiếp đường tròn (O). H là trung điểm của BC; M là điểm bất kì thuộc đoạn thẳng BH (M khác B; M khác H). Lấy điểm N thuộc đoạn thẳng CA sao cho CN = BM. Gọi I là trung điểm của MN. a) Chứng minh bốn điểm O, M, H, I cùng thuộc một đường tròn. b) Gọi K là giao điểm của OI và AB. Chứng minh MNK là tam giác đều. c) Xác định vị trí của điểm M để IAB có chu vi nhỏ nhất. + Cho đường tròn (O;R) có dây BC cố định (BC < 2R) và điểm A trên cung lớn BC (A khác B; A khác C; A không là điểm chính giữa cung lớn BC). Gọi H là hình chiếu của A trên BC; E và F lần lượt là hình chiếu của B và C trên đường kính AK. a) Chứng minh HE vuông góc AC. b) Chứng minh SABC/AB.BC.AC = 1/4R. c) Chứng minh tâm đường tròn ngoại tiếp HEF là một điểm cố định khi điểm A di động trên cung lớn BC.
Đề tuyển sinh lớp 10 chuyên môn Toán (vòng 2) năm 2023 - 2024 trường ĐHKH Huế
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (vòng 2 – chuyên Toán và chuyên Tin) năm học 2023 – 2024 trường Đại học Khoa học Huế, tỉnh Thừa Thiên Huế; kỳ thi được diễn ra vào ngày 30 tháng 05 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 chuyên môn Toán (vòng 2) năm 2023 – 2024 trường ĐHKH Huế : + Trên mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = (m + 1)x − 2m + 3 (m là tham số) và parabol (P): y = x2. Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt. Gọi x1, x2 lần lượt là hoành độ hai giao điểm, xác định m để |x1|, |x2| là độ dài hai cạnh của một hình chữ nhật có độ dài đường chéo bằng 10. + Tìm tất cả các số nguyên n để A = n2 + 4n + 7 là một số chính phương. Chứng minh rằng M = (p − 1)(p + 1) chia hết cho 12 với p là số nguyên tố lớn hơn 3. + Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm phân biệt A, B. Điểm C thuộc đường tròn (O) sao cho C và O cùng thuộc nửa mặt phẳng bờ là đường thẳng AB. Tiếp tuyến của đường tròn (O) tại điểm C cắt đường thẳng AB tại D. Đường tròn tâm D bán kính DC cắt đường tròn (O) tại điểm thứ hai E, cắt đường tròn (O’) tại F và G trong đó F nằm bên trong đường tròn (O). Gọi H là giao điểm của DO với CE, K là giao điểm của DO’ và FG. a) Chứng minh DC2 = DA.DB và DG là tiếp tuyến của đường tròn (O’). b) Chứng minh tứ giác OHKO’ nội tiếp. c) Chứng minh CE, FG và AB đồng quy.
Đề tuyển sinh lớp 10 chuyên môn Toán (vòng 1) năm 2023 - 2024 trường ĐHKH Huế
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (vòng 1) năm học 2023 – 2024 trường Đại học Khoa học Huế, tỉnh Thừa Thiên Huế; kỳ thi được diễn ra vào ngày 30 tháng 05 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 chuyên môn Toán (vòng 1) năm 2023 – 2024 trường ĐHKH Huế : + Theo kế hoạch, một xưởng phải may xong 560 bộ quần áo trong thời gian quy định với năng suất mỗi ngày là như nhau. Đến khi thực hiện, do tăng năng suất nên mỗi ngày xưởng đó may được nhiều hơn 10 bộ quần áo so với kế hoạch. Vì thế, xưởng đã hoàn thành trước kế hoạch 1 ngày. Hỏi theo kế hoạch, mỗi ngày xưởng đó phải may xong bao nhiêu bộ quần áo? + Qua điểm A nằm ngoài đường tròn (O) kẻ 2 tiếp tuyến AB, AC (B, C là các tiếp điểm) và cát tuyến AEF (AE < AF) sao cho tia AE nằm giữa hai tia AB, AO. Gọi H là giao điểm của AO và BC. a) Chứng minh tứ giác ABOC nội tiếp. b) Chứng minh AB2 = AE.AF và tứ giác EFOH nội tiếp. c) Từ E vẽ đường thẳng song song với BF cắt AB tại M và cắt BC tại N. Chứng minh E là trung điểm của đoạn thẳng MN. + Một khối đồ chơi có hình dạng là một hình trụ và một hình nón chung đáy. Biết chiều cao khối đồ chơi là h = 9 cm, chiều cao hình nón là h1, chiều cao hình trụ là h2 và h2 = 2h1. Bán kính đáy hình trụ là r = 4 cm (xem hình vẽ bên). Tính thể tích của khối đồ chơi đó.
Đề tham khảo Toán thi vào 10 năm 2023 - 2024 phòng GDĐT thị xã Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tham khảo môn Toán kỳ thi tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 phòng Giáo dục và Đào tạo thị xã Phú Thọ, tỉnh Phú Thọ; đề thi có đáp án và thang điểm dự kiến. Trích dẫn Đề tham khảo Toán thi vào 10 năm 2023 – 2024 phòng GD&ĐT thị xã Phú Thọ : + Cho một số có hai chữ số. Nếu đổi chỗ hai chữ số của nó thì được một số mới lớn hơn số đã cho là 63. Tổng của số đã cho và số mới tạo thành 99. Tổng các chữ số của số đó là? + Cho hàm số y = ax2 với a ≠ 0. Kết luận nào sau đây là đúng? A. Hàm số đồng biến khi a 0 và x 0 B. Hàm số đồng biến khi a 0 và x 0 C. Hàm số đồng biến khi a 0 và x 0 D. Hàm số đồng biến khi a 0 và x = 0. + Cho hai điểm A B cố định. Một điểm C khác B di chuyển trên đường tròn (O) đường kính AB sao cho AC BC. Tiếp tuyến của đường tròn (O) tại C cắt tiếp tuyến tại A ở D cắt AB ở E. Đường thẳng đi qua E vuông góc với AB cắt AC BD lần lượt tại F G. Gọi I là trung điểm AE. a) Chứng minh rằng tứ giác ADCO nội tiếp một đường tròn. b) Chứng minh rằng 2 2 AB OD BC c) Chứng minh EF 2 EG d) Chứng minh rằng trực tâm tam giác GIF là một điểm cố định.