Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 năm 2022 - 2023 phòng GDĐT Nghi Lộc - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Nghi Lộc, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn đề thi thử Toán vào lớp 10 năm 2022 – 2023 phòng GD&ĐT Nghi Lộc – Nghệ An : + Trong đợt dịch Covid-19 vừa qua để ủng hộ cho đội tình nguyện ra quân vì môi trường xanh-sạch- đẹp, mẹ có nhờ Ngọc ra cửa hàng tạp hóa để mua 4 chai nước sát khuẩn và 3 hộp khẩu trang hết 449 nghìn đồng. Tính giá tiền của mỗi chai nước sát khuẩn và giá tiền mỗi hộp khẩu trang mà Ngọc đã mua. Biết giá tiền của 1 chai nước sát khuẩn hơn giá tiền 1 hộp khẩu trang là 16 nghìn đồng. + Cho điểm M nằm ngoài đường trong (O; R) sao cho OM = 3R. Qua M vẽ hai tiếp tuyến MA, MB với đường tròn (O; R) (A, B là các tiếp điểm) và kẻ cát tuyến MCD của đường tròn (O; R) cắt đoạn thẳng OA (C nằm giữa M và D). Gọi I là trung điểm của dây cung CD và H là giao điểm của AB với OM. a) Chứng minh: Tứ giác AIOB là tứ giác nội tiếp đường tròn, Xác định tâm của đường tròn này. b) Chứng minh: MC.MD MH.MO c) Gọi E, F lần lượt là hình chiếu của C lên MA và MB. Tìm giá trị lớn nhất của tích CE.CF khi cát tuyến MCD quay quanh điểm M. + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): 2 y mx m 2 1 và parabol: (P): 2 y x a) Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt. b) Tìm giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ 1 2 x x thỏa mãn : 1 2 12 11 2 1.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Khánh Hòa
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Khánh Hòa tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Khánh Hòa. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Khánh Hòa, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Khánh Hòa : + Trung tâm thương mại VC của thành phố NT có 100 gian hàng. Nếu mỗi gian hàng của Trung tâm thương mại VC cho thuê với giá 100.000.000 đồng (một trăm triệu đồng) một năm thì tất cả các gian hàng đều được thuê hết. Biết rằng, cứ mỗi lần tăng giá 5% tiền thuê mỗi gian hàng một năm thì Trung tâm thương mại VC có thêm 2 gian hàng trống. Hỏi người quản lý phải quyết định giá thuê mỗi gian hàng là bao nhiêu một năm để doanh thu của Trung tâm thương mại VC từ tiền cho thuê gian hàng trong năm là lớn nhất? [ads] + Trên mặt phẳng tọa độ Oxy, cho điểm T(−2;-2), parabol (P) có phương trình y = -8x^2 và đường thẳng d có phương trình y = 2x − 6. a) ðiểm T có thuộc đường thẳng d không? b) Xác định tọa độ giao điểm của đường thẳng d và parabol (P). + Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn (A) bán kính AH. Từ đỉnh B kẻ tiếp tuyến BI với (A) cắt đường thẳng AC tại D (điểm I là tiếp điểm, I và H không trùng nhau). a) Chứng minh AHBI là tứ giác nội tiếp. b) Cho AB = 4cm, AC = 3cm. Tính AI. c) Gọi HK là đường kính của (A). Chứng minh rằng BC = BI + DK.
Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Sơn La
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Sơn La tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Sơn La. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Sơn La, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Sơn La : + Trong kỳ thi tuyển sinh vào lớp 10 năm học 2019 – 2020, số thí sinh vào trường THPT chuyên bằng 2/3, số thí sinh thi vào trường PTDT Nội trú. Biết rằng tổng số phòng thi của cả hai trường là 80 phòng thi và mỗi phòng thi có đúng 24 thí sinh. Hỏi số thí sinh vào mỗi trường bằng bao nhiêu? [ads] + Cho đường tròn (O) đường kính AB = 2R và C là một điểm nằm trên đường tròn sao cho CA > CB. Gọi I là trung điểm của OA, vẽ đường thẳng d vuông góc với AB tại I, d cắt tia BC tại M và cắt đoạn AC tại P, AM cắt đường tròn (O) tại điểm thứ hai K. a) Chứng minh tứ giác BCPI nội tiếp được trong một đường tròn. b) Chứng minh ba điểm B, P, K thẳng hàng. c) Các tiếp tuyến tại B và C của đường tròn (O) cắt nhau tại Q, biết BC = R. Tính độ dài BK và diện tích tứ giác QAIM theo R. + Cho parabol (P):y = x^2 và đường thẳng y = (2m – 1)x + m^2 + 2m (m là tham số, m thuộc R). a) Xác định tất cả các giá trị của m để đường thẳng (d) đi qua điểm I(1;3). b) Tìm m để parabol (P) cắt đường thẳng (d) tại hai điểm phân biệt A, B. Gọi x1, x2 là hoành độ hai điểm A, B; tìm m sao cho x1^2 + x2^2 + 6x1x2 = 2020.
Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Thái Bình
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Thái Bình tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Thái Bình. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Thái Bình, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Thái Bình : + Một mảnh vườn hình chữ nhật có diện tích 150 m2. Biết rằng, chiều dài mảnh vườn hơn chiều rộng mảnh vườn là 5 m. Tính chiều rộng mảnh vườn. + Giải hệ phương trình: 4x + y = 3 và 2x – y = 1 (không sử dụng máy tính cầm tay). + Cho đường tròn tâm O đường kính AB. Kẻ dây cung CD vuông góc với AB tại H (H nằm giữa A và O, H khác A và O). Lấy điểm G thuộc CH (G khác C và H), tia AG cắt đường tròn tại E khác A. a. Chứng minh tứ giác BEGH là tứ giác nội tiếp. b. Gọi K là giao điểm của hai đường thẳng BE và CD. Chứng minh: KC.KD = KE.KB. c. Đoạn thẳng AK cắt đường tròn O tại F khác A. Chứng minh G là tâm đường tròn nội tiếp tam giác HEF. d. Gọi M, N lần lượt là hình chiếu vuông góc của A và B lên đường thẳng EF. Chứng minh HE + HF = MN.
Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Vĩnh Long
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Vĩnh Long tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Vĩnh Long. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Vĩnh Long, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Vĩnh Long : + Một công ty vận tải dự định dùng loại xe lớn để vận chuyển 20 tấn hàng hóa theo một hợp đồng. Nhưng khi vào việc, công ty không còn xe lớn nên phải thay bằng những xe nhỏ. Mỗi xe nhỏ vận chuyển được khối lượng ít hơn 1 lần so với mỗi xe lên theo dự định. ðể đảm bảo thời gian đã hợp đồng, công ty phải dùng một số lượng xe nhiều hơn số xe dự định là 1 xe. Hỏi mỗi xe nhỏ vận chuyển bao nhiêu tấn hàng hóa? (Biết các xe cùng loại thi có khối lượng vận chuyển như nhau). [ads] + Cho đường tròn (O) đường kính AB và điểm M bất kì thuộc đường tròn sao cho MA < MB (M ≠ A). Kẻ tiếp tuyến tại A của đường tròn, tiếp tuyến này cắt tia BM ở N. Tiếp tuyến của đường tròn tại M cắt CN ở D. a) Chứng minh bốn điểm A, D, M, O cùng thuộc một đường tròn. b) Chứng minh OD song song BM. c) Qua O kẻ đường thẳng vuông góc với AB và cắt đường thẳng BM tại I. Gọi giao điểm của AI và BD là G. Chứng minh ba điểm N, G, O thẳng hàng. + Cho tam giác ABC có AB = 4cm, AC = 4√3cm, BC = 8cm. a) Chứng minh tam giác ABC vuông. b) Tính số đo góc B, C và độ dài đường cao AH của tam giác ABC.