Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề ôn tập cuối học kì 2 (HK2) lớp 10 môn Toán năm 2022 2023 trường Nguyễn Khuyến Bình Dương

Nội dung Đề ôn tập cuối học kì 2 (HK2) lớp 10 môn Toán năm 2022 2023 trường Nguyễn Khuyến Bình Dương Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề ôn tập kiểm tra cuối học kì 2 môn Toán lớp 10 năm học 2022 – 2023 trường THCS & THPT Nguyễn Khuyến, thành phố Thủ Dầu Một, tỉnh Bình Dương; đề thi được biên soạn theo cấu trúc 50% trắc nghiệm + 50% tự luận (theo điểm số), thời gian làm bài 90 phút (không kể thời gian phát đề), đề kiểm tra có đáp án và hướng dẫn giải mã đề 179 – 279. Trích dẫn Đề ôn tập cuối kì 2 Toán lớp 10 năm 2022 – 2023 trường Nguyễn Khuyến – Bình Dương : + Cho hyperbola (H) có phương trình chính tắc x2 a2 y2 b2 1. Cho các mệnh đề sau: a) Tiêu cự của (H) là 2c, trong đó c2 = a2 + b2. b) (H) có độ dài trục thực bằng 2a, độ dài trục ảo bằng 2b. c) Phương trình hai tiệm cận (H) là y = ±abx. d) Tâm sai của (H) là e = ca > 1. Hỏi có bao nhiêu mệnh đề đúng? + Thực hiện theo các yêu cầu sau: a) Trong một ban chấp hành Đoàn trường gồm 7 người, cần chọn ra 3 người vào ban thường vụ. Nếu cần chọn ban thường vụ gồm Bí thư, Phó bí thư, Ủy viên thường vụ thì có bao nhiêu cách chọn? b) Chú Cao Ngạo có một xe bán bánh bao nuôi sống gia đình. Mỗi ngày chú bán 10 chiếc bánh bao, trong đó có 4 chiếc cũ hấp lại. Bạn Lại Mộng Tưởng trên đường đến trường có ghé ngang xe bánh bao của chú Cao Ngạo mua ngẫu nhiên 2 chiếc bánh bao trong 10 chiếc đó. Xác suất để bạn Lại Mộng Tưởng mua phải 1 chiếc bánh bao cũ và 1 chiếc bánh bao mới là bao nhiêu? + Trong mặt phẳng Oxy. a) Viết phương trình đường thẳng (d) đi qua điểm A (1; −2) đồng thời song song với đường thẳng (d′) có phương trình 2x − 3y + 1 = 0. b) Viết phương trình tiếp tuyến của đường tròn (C) : (x − 1)2 + (y + 2)2 = 5 tại điểm M (2; 0). c) Cho đường tròn (C) có phương trình x2 + y2 − 2x + 4y + m = 0 với m là tham số. Tính bán kính của đường tròn (C), biết rằng đường tròn (C) đi qua điểm B (1; 1). d) Viết phương trình chính tắc ellipse (E) đi qua hai điểm M1 (2; 0) và M2.

Nguồn: sytu.vn

Đọc Sách

Đề thi HK2 Toán 10 năm 2019 - 2020 trường THPT Đặng Thúc Hứa - Nghệ An
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi HK2 Toán 10 năm 2019 – 2020 trường THPT Đặng Thúc Hứa – Nghệ An; đề thi có mã đề 872, gồm 04 trang với 28 câu trắc nghiệm và 03 câu tự luận, thời gian làm bài thi là 90 phút. Trích dẫn đề thi HK2 Toán 10 năm 2019 – 2020 trường THPT Đặng Thúc Hứa – Nghệ An : + Trong mặt phẳng với hệ tọa độ Oxy cho đường thẳng d: 3x – 4y – 4 = 0 và điểm I(-1;2). a) Tính khoảng cách từ điểm I đến đường thẳng d. b) Viết phương trình đường tròn (C) nhận I làm tâm và cắt d theo một dây cung có độ dài bằng 8. [ads] + Cho tam giác ABC có BC = a, CA = b, AB = c. Mệnh đề nào sau đây đúng? A. Nếu b^2 + c^2 – a^2 < 0 thì góc A nhọn. B. Nếu b^2 + c^2 – a^2 > 0 thì góc A nhọn. C. Nếu b^2 + c^2 – a^2 < 0 thì góc A vuông. D. Nếu b^2 + c^2 – a^2 > 0 thì góc A tù. + Cho biểu thức A = (sin 2α + sin α)/(1 + cos 2α + cos α) với điều kiện của x để A có nghĩa. Rút gọn biểu thức A được biểu thức dưới dạng a.tan bα trong đó a và b là các số nguyên. Khi đó a + b bằng?
Đề thi HK2 Toán 10 năm học 2019 - 2020 trường Lương Thế Vinh - Hà Nội
Ngày … tháng 06 năm 2020, trường THCS & THPT Lương Thế Vinh, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng môn Toán lớp 10 giai đoạn cuối học kỳ 2 năm học 2019 – 2020. Đề thi HK2 Toán 10 năm học 2019 – 2020 trường Lương Thế Vinh – Hà Nội mã đề 001 gồm có 06 trang với 50 câu trắc nghiệm, thời gian làm bài thi 90 phút. Trích dẫn đề thi HK2 Toán 10 năm học 2019 – 2020 trường Lương Thế Vinh – Hà Nội : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: 3x – 4y + 2m = 0 và đường tròn (C): (x – 1)^2 + (y – 2)^2 = 4. Có tất cả bao nhiêu giá trị nguyên của tham số m để trên đường thẳng d tồn tại hai điểm M thỏa mãn từ M kẻ được hai tiếp tuyến MA, MB đến đường tròn (C) (A và B là các tiếp điểm) sao cho tam giác MAB là tam giác đều? [ads] + Tam giác ABC không đều có ba góc thỏa mãn sinA.cosB – cosA.sinB = 0. Khi đó: A. Tam giác ABC cân tại B. B. Tam giác ABC cân tại C. C. Tam giác ABC cân tại A. D. Tam giác ABC vuông tại A. + Trong mặt phẳng tọa độ Oxy, cho ba điểm A(1;2), B(3;-1), C(2;4). Điểm M thuộc đường thẳng x + y + 2 = 0 sao cho biểu thức |6MA – 5MB – 2MC| đạt giá trị nhỏ nhất. Hoành độ x0 của điểm M thỏa mãn?
Đề thi HK2 Toán 10 năm 2019 - 2020 trường THPT Phan Ngọc Hiển - Cà Mau
Thứ Năm ngày 18 tháng 06 năm 2020, trường THPT Phan Ngọc Hiển, huyện Năm Căn, tỉnh Cà Mau tổ chức kỳ thi kiểm tra chất lượng môn Toán lớp 10 giai đoạn cuối học kỳ 2 năm học 2019 – 2020. Đề thi HK2 Toán 10 năm 2019 – 2020 trường THPT Phan Ngọc Hiển – Cà Mau mã đề 106 gồm 10 câu trắc nghiệm và 04 câu tự luận, đề thi gồm 02 trang, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HK2 Toán 10 năm 2019 – 2020 trường THPT Phan Ngọc Hiển – Cà Mau : + Trong mặt phẳng chứa hệ trục tọa độ Oxy, cho hai điểm A(−2;1), B(2;3) và đường thẳng ∆: x − 2y − 1 = 0. a) Viết phương trình tham số của đường thẳng d đi qua hai điểm A và B. b) Viết phương trình đường tròn có tâm A và tiếp xúc với đường thẳng ∆. [ads] + Tìm các giá trị m nguyên để bất phương trình (m + 1)x^2 – 2(m + 1)x + 3 < 0 vô nghiệm với mọi x thuộc R. + Trong các đường thẳng có phương trình sau, đường thẳng nào cắt đường thẳng d: 2x – 3y – 8 = 0.
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Phan Chu Trinh - Đắk Lắk
Thứ Năm ngày 18 tháng 06 năm 2020, trường THPT Phan Chu Trinh, huyện Ea H’leo, tỉnh Đắk Lắk tổ chức kỳ thi kiểm tra chất lượng môn Toán lớp 10 giai đoạn cuối học kì 2 năm học 2019 – 2020. Đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Phan Chu Trinh – Đắk Lắk gồm có 04 mã đề: 123, 345, 567, 789; đề gồm 25 câu trắc nghiệm (05 điểm) và 04 câu tự luận (05 điểm), thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Phan Chu Trinh – Đắk Lắk : + Trong không gian Oxy, cho hai điểm A(1;3), B(−2;5) và đường thẳng ∆: x – 4y + 1 = 0. a) Viết phương trình tham số đường thẳng đi qua điểm B và có VTCP u = (1;-2). b) Viết phương trình đường có tâm A và tiếp xúc với đường thẳng ∆. c) Tìm điểm M ∈ ∆ sao cho OM = 1. [ads] + Trong không gian Oxy, cho hai đường thẳng ∆1: 2x – y + 1 = 0 và ∆2: x + 2y – 7 = 0. Viết phương trình đường thẳng ∆ qua gốc toạ độ sao cho ∆ tạo với ∆1 và ∆2 tam giác cân có đỉnh là giao điểm ∆1 và ∆2. + Cho phương trình đường tròn x^2 + y^2 – 2ax – 2by + c = 0. Bán kính của đường tròn được xác định bởi công thức nào sau đây?