Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tách phân dạng toán đề thi TN THPT môn Toán (2017 - 2023) phần Hình học

Tài liệu gồm 239 trang, được biên soạn bởi thầy giáo Dương Minh Hùng, tách phân dạng toán các đề thi tốt nghiệp THPT môn Toán từ năm 2017 đến năm 2023 phần Hình học, có đáp án và lời giải chi tiết. CHUYÊN ĐỀ THỂ TÍCH KHỐI ĐA DIỆN 2. BÀI 1 – KHÁI NIỆM KHỐI ĐA DIỆN 2. Tóm tắt lý thuyết cơ bản 2. Dạng toán cơ bản 3. + Dạng ➀: Câu hỏi về đỉnh, cạnh, mặt của một khối đa diện 3. + Dạng ➁: Phân chia, lắp ghép các khối đa diện 3. BÀI 2 – KHỐI ĐA DIỆN LỒI – ĐA DIỆN ĐỀU 5. Tóm tắt lý thuyết cơ bản 5. Dạng toán cơ bản 6. + Dạng ➀: Tính chất đối xứng và tính chất HH khác của khối đa diện 6. BÀI 3 – THỂ TÍCH KHỐI CHÓP 8. Tóm tắt lý thuyết cơ bản 8. Dạng toán cơ bản 10. + Dạng ➀: Câu hỏi dạng lý thuyết (công thức V, h, B; có sẵn h, B) 10. + Dạng ➁: Tính thể tích các khối chóp liên quan cạnh bên vuông góc đáy 14. + Dạng ➂: Thể tích khối chóp đều 19. + Dạng ➃: Thể tích khối chóp khác 24. + Dạng ➄: Tỉ số thể tích trong khối chóp 36. BÀI 4 – THỂ TÍCH KHỐI LĂNG TRỤ 42. Tóm tắt lý thuyết cơ bản 42. Dạng toán cơ bản 43. + Dạng ➀: Câu hỏi dạng lý thuyết (công thức V, h, B ; có sẵn h, B) 43. + Dạng ➁: Diện tích xung quanh, diện tích toàn phần và câu hỏi liên quan thể tích lăng trụ đứng 45. + Dạng ➂: Thể tích khối lăng trụ đều 59. + Dạng ➃: Câu hỏi liên quan đến thể tích (góc, khoảng cách) 61. + Dạng ➄: Bài toán cực trị 63. + Dạng ➅: Bài toán thực tế về khối đa diện 65. CHUYÊN ĐỀ MẶT TRÒN XOAY 66. BÀI 1 – MẶT NÓN 66. Tóm tắt lý thuyết cơ bản 66. Dạng toán cơ bản 66. + Dạng ➀: Câu hỏi lý thuyết về khối nón 66. + Dạng ➁: Diện tích xung quanh, diện tích toàn phần, thể tích (liên quan) khối nón khi biết các dữ kiện cơ bản 67. + Dạng ➂: Tính độ dài đường sinh, chiều cao, bán kính đáy, khoảng cách, góc, thiết diện của khối nón 84. + Dạng ➃: Khối nón kết hợp khối đa diện 88. + Dạng ➄: Bài toán cực trị về khối nón 88. BÀI 2 – MẶT TRỤ 90. Tóm tắt lý thuyết cơ bản 90. Dạng toán cơ bản 90. + Dạng ➀: Diện tích xung quanh, diện tích toàn phần, thể tích (liên quan) khối trụ khi biết các dữ kiện cơ bản 90. + Dạng ➁: Tính độ dài đường sinh, chiều cao, bán kính đáy, khoảng cách, góc, thiết diện của khối trụ 101. + Dạng ➂: Bài toán cực trị về khối trụ 102. + Dạng ➃: Bài toán thực tế về khối trụ 103. + Dạng ➄: Thể tích khối tròn xoay 109. + Dạng ➅: Khối tròn xoay nội tiếp, ngoại tiếp và kết hợp khối đa diện 110. BÀI 3 – MẶT CẦU 112. Tóm tắt lý thuyết cơ bản 112. Dạng toán cơ bản 113. + Dạng ➀: Câu hỏi chỉ liên quan đến biến đổi V, S, R 113. + Dạng ➁: Khối cầu nội – ngoại tiếp, liên kết khối đa diện 116. + Dạng ➂: Bài toán tổng hợp về khối nón, khối trụ, khối cầu 124. CHUYÊN ĐỀ PHƯƠNG PHÁP TỌA ĐỘ TRONG KG OXYZ 130. BÀI 1 – HỆ TRỤC TỌA ĐỘ TRONG KHÔNG GIAN OXYZ 130. Tóm tắt lý thuyết cơ bản 130. Dạng toán cơ bản 132. + Dạng ➀: Liên quan tọa độ điểm, véc – tơ trong hệ trục Oxyz 132. + Dạng ➁: Tích vô hướng và ứng dụng (độ dài, góc, khoảng cách) 137. + Dạng ➂: Xác định tâm, bán kính, diện tích, thể tích của cầu 138. + Dạng ➃: Viết phương trình mặt cầu 142. + Dạng ➄: Vị trí tương đối của hai mặt cầu, điểm với mặt cầu 146. + Dạng ➅: Các bài toán cực trị liên quan đến điểm, mặt cầu 156. BÀI 2 – PHƯƠNG TRÌNH ĐƯỜNG THẲNG 162. Tóm tắt lý thuyết cơ bản 162. Dạng toán cơ bản 164. + Dạng ➀: Viết phương trình đường thẳng biết yếu tố điểm, vectơ, song song hay vuông góc (với đường thẳng, mặt phẳng) 165. + Dạng ➁: Viết phương trình đường thẳng liên quan đến tương giao 182. + Dạng ➂: Viết phương trình đường thẳng liên quan đến góc, khoảng cách, diện tích 186. + Dạng ➃: Tọa độ điểm liên quan đến đường thẳng và bài toán liên quan 191. + Dạng ➄: Phương trình mặt phẳng liên quan đến đường thẳng 194. + Dạng ➅: Bài toán về khoảng cách liên quan đến đường thẳng 195. + Dạng ➆: Câu hỏi về VTTĐ liên quan đến đường thẳng (song song, nằm trên) 196. + Dạng ➇: Hình chiếu của điểm lên đường thẳng và bài toán liên quan 196. BÀI 3 – PHƯƠNG TRÌNH MẶT PHẲNG 198. Tóm tắt lý thuyết cơ bản 198. Dạng toán cơ bản 199. + Dạng ➀: Xác định VTPT 200. + Dạng ➁: Viết phương trình mặt phẳng không dùng PT đường thẳng 203. + Dạng ➂: Vị trí tương đối liên quan mặt phẳng – điểm 214. + Dạng ➃: Tìm tọa độ điểm liên quan đến mặt phẳng 215. + Dạng ➄: Viết phương trình mặt cầu liên quan đến mặt phẳng 217. + Dạng ➅: Các bài toán cực trị liên quan điểm, mặt phẳng, mặt tròn xoay 218. + Dạng ➆: PTMP theo đoạn chắn 225. + Dạng ➇: Hình chiếu của điểm lên mặt phẳng và bài toán liên quan 226. + Dạng ➈: PTMP liên quan đến góc, khoảng cách, không dùng PTĐT 227. + Dạng ➉: Câu hỏi liên quan đến VTCP của đường thẳng 232.

Nguồn: toanmath.com

Đọc Sách

Trắc nghiệm tổng ôn THPTQG 2018 môn Toán - Lục Trí Tuyên
Tài liệu gồm 155 trang tuyển chọn 1331 câu hỏi trắc nghiệm tổng ôn THPTQG 2018 môn Toán có đáp án thuộc các chủ đề Toán 11 và Toán 12, tài liệu được biên soạn bởi thầy Lục Trí Tuyên. Các chủ đề trong tài liệu bao gồm : TỔNG ÔN LỚP 11 Hàm số và phương trình lượng giác Tổ hợp – Xác suất Dãy số. Cấp số cộng – Cấp số nhân Giới hạn. Hàm số liên tục Đạo hàm. Ý nghĩa của đạo hàm Phép biến hình trong mặt phẳng Quan hệ song song trong không gian Quan hệ vuông góc trong không gian [ads] TỔNG ÔN LỚP 12 Hàm số Mũ và Logarit Nguyên hàm – Tích phân Số phức Khối đa diện. Thể tích Khối tròn xoay Tọa độ trong không gian
Chuyên đề Toán 11 ôn thi THPT Quốc gia - Lư Sĩ Pháp
Tài liệu gồm 96 trang tổng hợp lý thuyết và bài tập trắc nghiệm có đáp án các chuyên đề Toán 11 nhiều khả năng xuất hiện trong đề thi THPT Quốc gia môn Toán, tài liệu được biên soạn bởi thầy Lư Sĩ Pháp (Giáo viên trường THPT Tuy Phong – Bình Thuận). Nội dung của cuốn tài liệu bám sát chương trình chuẩn và chương trình nâng cao về môn Toán đã được Bộ Giáo dục và Đào tạo quy định. Các chuyên đề trong tài liệu: + Chuyên đề 1. Lượng giác + Chuyên đề 2. Tổ hợp và xác suất + Chuyên đề 3. Dãy số, cấp số cộng và cấp số nhân + Chuyên đề 4. Giới hạn + Chuyên đề 5. Phép dời hình và phép đồng dạng [ads] Mỗi chuyên đề gồm 2 phần: Phần 1. Phần lý thuyết: Phần này trình bày đầy đủ lí thuyết cần nắm cho mỗi chuyên đề. Phần 2. Phần trắc nghiệm: Tổng hợp bài tập trắc nghiệm theo các chuyên đề, đa dạng, phong phú và bám sát cấu trúc thi của Bộ.
Công phá kỹ thuật Casio - Nguyễn Ngọc Nam, Ngọc Huyền LB
giới thiệu đến bạn đọc bản PDF xem trước của cuốn sách Công phá kỹ thuật Casio – cuốn sách giúp em tự tin hơn khi học Toán lớp 10 – 11 – 12, sách gồm 496 trang được biên soạn bởi các tác giả Nguyễn Ngọc Nam và Ngọc Huyền LB. Nội dung chính trong sách Công phá kỹ thuật Casio: + Phần 1. Tổng quan về các tính năng trên máy tính cầm tay: Hệ thống lại toàn bộ tính năng, các phím chức năng một cách chi tiết, đầy đủ nhất về công dụng, cách sử dụng máy tính cầm tay, điều này khiến sách trở nên phù hợp với cả những học sinh chưa có các kỹ năng cơ bản về việc sử dụng máy tính Casio trong giải toán. [ads] + Phần 2. Các chủ đề Toán sử dụng máy tính cầm tay: Gồm 11 chủ đề được trình bày xuyên suốt từ lớp 10 đến lớp 12; gồm cả đại số, giải tích lẫn hình học, bao gồm: hàm số và các ứng dụng, hàm số lượng giác và phương trình lượng giác, tổ hợp – xác suất – nhị thức Newton, giới hạn, hàm số lũy thừa – hàm số mũ – hàm số logarit, nguyên hàm – tích phân – ứng dụng, số phức, phương trình – hệ phương trình – bất phương trình, phép biến hình trong mặt phẳng, phương pháp tọa độ trong mặt phẳng, phương pháp tọa độ trong không gian. Trong mỗi chủ đề là hệ thống các ví dụ, bài tập rèn luyện được giải chi tiết, trình bày một cách tỉ mỉ quy trình bấm máy tính kèm theo phân tích, nhận xét, lưu ý và mở rộng. + Ngoài ra, phần cuối sách cung cấp các kỹ thuật bổ trợ, công thức giải nhanh kèm ví dụ áp dụng và hướng dẫn, phân tích chi tiết.
Hướng dẫn giải một số bài toán ứng dụng thực tiễn - Trần Hoàng Long
Tài liệu gồm 71 trang tuyển chọn và giải chi tiết một số bài toán thực tế vận dụng kiến thức Toán lớp 10, 11 và 12. Việc vận dụng kiến thức toán học vào giải quyết các vấn đề thực tiễn là một vấn đề quan trọng trong dạy và học toán ở trường phổ thông. Điều này đó được thể hiện từ trong đề thi THPT quốc gia và đề thi minh họa của Bộ Giáo dục. Trong chương trình sách giáo khoa Toán hiện hành, nhất là trong chương trình Đại số và Giải tích, có nhiều chủ đề kiến thức có nhiều lợi thế trong việc lồng ghép những bài toán mang tính thực tế cao, chẳng hạn: Hệ bất phương trình bậc nhất hai ẩn, Phương trình bậc hai, Bất phương trình bậc hai (Lớp 10), Giải tích tổ hợp, Xác suất, Cấp số cộng, Cấp số nhân (lớp 11), Đạo hàm (Lớp 12) … Những chủ đề có vai trò rất quan trọng trong việc rèn luyện cho học sinh kỹ năng vận dụng kiến thức Toán học vào thực tiễn . Tuy nhiên, vì nhiều lý do ít được sự quan tâm, chú ý khai thác của người dạy và người học toán. Trong chuyên đề này, tôi cố gắng làm những công việc sau đây: + Phân loại các bài tập theo từng chủ đề kiến thức + Cố gắng sưu tầm càng nhiều càng tốt các tình huống thực tiễn từ đó nếu lên bài toán thực tế cần phải giải quyết, vận dụng kiến thức toán đă học để giải quyết vấn đề + Xây dựng hệ thống các bài toán thực tế theo từng chủ đề kiến thức. Mặc dù đă rất cố gắng nhưng do khả năng hạn chế nên chuyên đề này chắc chắn sẽ còn nhiều hạn chế, kính mong quý thầy, cô đóng góp ý kiến để tài liệu này tốt hơn ở tương lai [ads] Các chủ đề trong tài liệu : 1. Chủ đề đạo hàm: Đây là công cụ hữu hiệu trong việc tìm cực trị; tìm giá trị lớn nhất, nhỏ nhất của hàm số. Thông qua việc dạy học kiến thức này, ta có thể cho học sinh giải những bài toán thực tiễn khá hấp dẫn và mang nhiều ý nghĩa. 2. Chủ đề hàm số: Từ tình huống thực tế cần giải quyết, tiến hành thực nghiệm, thu thập các số liệu từ đó lập ra hàm số sau đó khảo sát hàm số tm ra phương án tối ưu cho vấn đề cần giải quyết. 3. Chủ đề hệ bất phương trình bậc nhất hai ẩn: Trong chủ đề này có thể khai thác được nhiều dạng toán gần gũi với đời sống thực tiễn như: Bài toán vận tải, Bài toán sản xuất đồng bộ, Bài toán thực đơn, Bài toán lập kế hoạch sản xuất trong điều kiện tài nguyên hạn chế, Bài toán vốn đầu tư nhỏ nhất, Bài toán pha trộn … 4. Chủ đề dãy số, cấp số cộng, cấp số nhân 5. Chủ đề giải tích tổ hợp, xác suất