Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tách phân dạng toán đề thi TN THPT môn Toán (2017 - 2023) phần Hình học

Tài liệu gồm 239 trang, được biên soạn bởi thầy giáo Dương Minh Hùng, tách phân dạng toán các đề thi tốt nghiệp THPT môn Toán từ năm 2017 đến năm 2023 phần Hình học, có đáp án và lời giải chi tiết. CHUYÊN ĐỀ THỂ TÍCH KHỐI ĐA DIỆN 2. BÀI 1 – KHÁI NIỆM KHỐI ĐA DIỆN 2. Tóm tắt lý thuyết cơ bản 2. Dạng toán cơ bản 3. + Dạng ➀: Câu hỏi về đỉnh, cạnh, mặt của một khối đa diện 3. + Dạng ➁: Phân chia, lắp ghép các khối đa diện 3. BÀI 2 – KHỐI ĐA DIỆN LỒI – ĐA DIỆN ĐỀU 5. Tóm tắt lý thuyết cơ bản 5. Dạng toán cơ bản 6. + Dạng ➀: Tính chất đối xứng và tính chất HH khác của khối đa diện 6. BÀI 3 – THỂ TÍCH KHỐI CHÓP 8. Tóm tắt lý thuyết cơ bản 8. Dạng toán cơ bản 10. + Dạng ➀: Câu hỏi dạng lý thuyết (công thức V, h, B; có sẵn h, B) 10. + Dạng ➁: Tính thể tích các khối chóp liên quan cạnh bên vuông góc đáy 14. + Dạng ➂: Thể tích khối chóp đều 19. + Dạng ➃: Thể tích khối chóp khác 24. + Dạng ➄: Tỉ số thể tích trong khối chóp 36. BÀI 4 – THỂ TÍCH KHỐI LĂNG TRỤ 42. Tóm tắt lý thuyết cơ bản 42. Dạng toán cơ bản 43. + Dạng ➀: Câu hỏi dạng lý thuyết (công thức V, h, B ; có sẵn h, B) 43. + Dạng ➁: Diện tích xung quanh, diện tích toàn phần và câu hỏi liên quan thể tích lăng trụ đứng 45. + Dạng ➂: Thể tích khối lăng trụ đều 59. + Dạng ➃: Câu hỏi liên quan đến thể tích (góc, khoảng cách) 61. + Dạng ➄: Bài toán cực trị 63. + Dạng ➅: Bài toán thực tế về khối đa diện 65. CHUYÊN ĐỀ MẶT TRÒN XOAY 66. BÀI 1 – MẶT NÓN 66. Tóm tắt lý thuyết cơ bản 66. Dạng toán cơ bản 66. + Dạng ➀: Câu hỏi lý thuyết về khối nón 66. + Dạng ➁: Diện tích xung quanh, diện tích toàn phần, thể tích (liên quan) khối nón khi biết các dữ kiện cơ bản 67. + Dạng ➂: Tính độ dài đường sinh, chiều cao, bán kính đáy, khoảng cách, góc, thiết diện của khối nón 84. + Dạng ➃: Khối nón kết hợp khối đa diện 88. + Dạng ➄: Bài toán cực trị về khối nón 88. BÀI 2 – MẶT TRỤ 90. Tóm tắt lý thuyết cơ bản 90. Dạng toán cơ bản 90. + Dạng ➀: Diện tích xung quanh, diện tích toàn phần, thể tích (liên quan) khối trụ khi biết các dữ kiện cơ bản 90. + Dạng ➁: Tính độ dài đường sinh, chiều cao, bán kính đáy, khoảng cách, góc, thiết diện của khối trụ 101. + Dạng ➂: Bài toán cực trị về khối trụ 102. + Dạng ➃: Bài toán thực tế về khối trụ 103. + Dạng ➄: Thể tích khối tròn xoay 109. + Dạng ➅: Khối tròn xoay nội tiếp, ngoại tiếp và kết hợp khối đa diện 110. BÀI 3 – MẶT CẦU 112. Tóm tắt lý thuyết cơ bản 112. Dạng toán cơ bản 113. + Dạng ➀: Câu hỏi chỉ liên quan đến biến đổi V, S, R 113. + Dạng ➁: Khối cầu nội – ngoại tiếp, liên kết khối đa diện 116. + Dạng ➂: Bài toán tổng hợp về khối nón, khối trụ, khối cầu 124. CHUYÊN ĐỀ PHƯƠNG PHÁP TỌA ĐỘ TRONG KG OXYZ 130. BÀI 1 – HỆ TRỤC TỌA ĐỘ TRONG KHÔNG GIAN OXYZ 130. Tóm tắt lý thuyết cơ bản 130. Dạng toán cơ bản 132. + Dạng ➀: Liên quan tọa độ điểm, véc – tơ trong hệ trục Oxyz 132. + Dạng ➁: Tích vô hướng và ứng dụng (độ dài, góc, khoảng cách) 137. + Dạng ➂: Xác định tâm, bán kính, diện tích, thể tích của cầu 138. + Dạng ➃: Viết phương trình mặt cầu 142. + Dạng ➄: Vị trí tương đối của hai mặt cầu, điểm với mặt cầu 146. + Dạng ➅: Các bài toán cực trị liên quan đến điểm, mặt cầu 156. BÀI 2 – PHƯƠNG TRÌNH ĐƯỜNG THẲNG 162. Tóm tắt lý thuyết cơ bản 162. Dạng toán cơ bản 164. + Dạng ➀: Viết phương trình đường thẳng biết yếu tố điểm, vectơ, song song hay vuông góc (với đường thẳng, mặt phẳng) 165. + Dạng ➁: Viết phương trình đường thẳng liên quan đến tương giao 182. + Dạng ➂: Viết phương trình đường thẳng liên quan đến góc, khoảng cách, diện tích 186. + Dạng ➃: Tọa độ điểm liên quan đến đường thẳng và bài toán liên quan 191. + Dạng ➄: Phương trình mặt phẳng liên quan đến đường thẳng 194. + Dạng ➅: Bài toán về khoảng cách liên quan đến đường thẳng 195. + Dạng ➆: Câu hỏi về VTTĐ liên quan đến đường thẳng (song song, nằm trên) 196. + Dạng ➇: Hình chiếu của điểm lên đường thẳng và bài toán liên quan 196. BÀI 3 – PHƯƠNG TRÌNH MẶT PHẲNG 198. Tóm tắt lý thuyết cơ bản 198. Dạng toán cơ bản 199. + Dạng ➀: Xác định VTPT 200. + Dạng ➁: Viết phương trình mặt phẳng không dùng PT đường thẳng 203. + Dạng ➂: Vị trí tương đối liên quan mặt phẳng – điểm 214. + Dạng ➃: Tìm tọa độ điểm liên quan đến mặt phẳng 215. + Dạng ➄: Viết phương trình mặt cầu liên quan đến mặt phẳng 217. + Dạng ➅: Các bài toán cực trị liên quan điểm, mặt phẳng, mặt tròn xoay 218. + Dạng ➆: PTMP theo đoạn chắn 225. + Dạng ➇: Hình chiếu của điểm lên mặt phẳng và bài toán liên quan 226. + Dạng ➈: PTMP liên quan đến góc, khoảng cách, không dùng PTĐT 227. + Dạng ➉: Câu hỏi liên quan đến VTCP của đường thẳng 232.

Nguồn: toanmath.com

Đọc Sách

Hệ thống kiến thức và phương pháp giải Toán THPT Võ Công Trường
Nội dung Hệ thống kiến thức và phương pháp giải Toán THPT Võ Công Trường Bản PDF Nội dung này được biên soạn bởi thầy Võ Công Trường, chuyên về hệ thống kiến thức và phương pháp giải Toán THPT, nhằm giúp học sinh ôn tập để chuẩn bị cho kỳ thi tốt nghiệp THPT môn Toán. Tài liệu này bao gồm 68 trang với nhiều chủ đề quan trọng như khảo sát hàm số, lũy thừa, nguyên hàm, số phức, khối đa diện, khối tròn xoay, phương pháp tọa độ trong không gian, phương trình và hệ phương trình, lượng giác, tổ hợp và xác suất, cấp số cộng – cấp số nhân, giới hạn, hình học phẳng và không gian, phép biến hình, sơ đồ tư duy Toán THPT.Thông qua các chủ đề này, học sinh sẽ được học và luyện tập các kiến thức cơ bản như khảo sát đồ thị hàm số, giải các bài toán liên quan, tính diện tích và thể tích, giải phương trình và hệ phương trình, tìm số phức thỏa mãn điều kiện đã cho, tính thể tích khối đa diện và khối tròn xoay, áp dụng phương pháp tọa độ trong không gian và nhiều nội dung hấp dẫn khác.Tài liệu này không chỉ cung cấp kiến thức mà còn giúp học sinh phát triển kỹ năng giải quyết vấn đề, tư duy logic và phân tích, từ đó nâng cao khả năng giải Toán của họ. Đây thực sự là một công cụ hữu ích giúp học sinh tự tin và thành công trong việc đối diện với kỳ thi quyết định tương lai của mình.
Tài liệu tổng ôn tập thi tốt nghiệp THPT môn Toán Lê Bá Bảo (Quyển 1)
Nội dung Tài liệu tổng ôn tập thi tốt nghiệp THPT môn Toán Lê Bá Bảo (Quyển 1) Bản PDF - Nội dung bài viết Tài liệu tổng ôn tập thi tốt nghiệp THPT môn Toán Lê Bá Bảo (Quyển 1) Tài liệu tổng ôn tập thi tốt nghiệp THPT môn Toán Lê Bá Bảo (Quyển 1) Tài liệu này được biên soạn bởi thầy Lê Bá Bảo, một giáo viên Toán tại trường THPT Đặng Huy Trứ, tỉnh Thừa Thiên Huế. Quyển sách gồm tổng cộng 216 trang, tập hợp các phiếu ôn tập dành cho kỳ thi tốt nghiệp THPT môn Toán theo từng chủ đề. Mỗi phiếu ôn tập đều đi kèm đáp án và lời giải chi tiết giúp học sinh tự kiểm tra và củng cố kiến thức một cách hiệu quả. Khái quát nội dung tài liệu bao gồm: Phần 1: Ôn thi THPT Quốc Gia môn Toán lớp 11. Phần 2: Trắc nghiệm chuyên đề môn Toán lớp 12 với chủ đề là khảo sát hàm số. Phần 3: Phiếu tổng ôn môn Toán lớp 12 tập trung vào chủ đề hàm số mũ và hàm số lôgarit. Phần 4: Đề kiểm tra định kỳ môn Toán lớp 12 với các chủ đề nguyên hàm, tích phân và ứng dụng. Phần 5: Chuyên đề trắc nghiệm môn Toán lớp 12 với chủ đề số phức. Phần 6: Đề kiểm tra định kỳ môn Toán lớp 12 với chủ đề khối đa diện và thể tích khối đa diện. Phần 7: Đề kiểm tra định kỳ môn Toán lớp 12 với chủ đề mặt nón, mặt trụ, mặt cầu. Phần 8: Đề kiểm tra định kỳ môn Toán lớp 12 với chủ đề hình học giải tích Oxyz. Phần 9: Đề thi thử tốt nghiệp THPT Quốc Gia 2020 môn Toán với đáp án và lời giải chi tiết. Tổng hợp các chuyên đề và đề thi thử, tài liệu này sẽ là nguồn luyện tập hữu ích giúp học sinh chuẩn bị tốt nhất cho kỳ thi tốt nghiệp THPT môn Toán.
Các chuyên đề Hình học ôn thi tốt nghiệp THPT Lư Sĩ Pháp
Nội dung Các chuyên đề Hình học ôn thi tốt nghiệp THPT Lư Sĩ Pháp Bản PDF - Nội dung bài viết Các chuyên đề Hình học ôn thi tốt nghiệp THPT Lư Sĩ Pháp Các chuyên đề Hình học ôn thi tốt nghiệp THPT Lư Sĩ Pháp Tài liệu này được biên soạn bởi thầy Lư Sĩ Pháp, gồm tổng cộng 78 trang. Được tạo ra để giúp học sinh ôn tập và chuẩn bị cho kỳ thi tốt nghiệp THPT, tài liệu tập trung vào các chuyên đề hình học. Chính xác là: 1. Chuyên đề 1: Thể tích khối đa diện 2. Chuyên đề 2: Mặt nón - Mặt trụ - Mặt cầu 3. Chuyên đề 3: Phương pháp tọa độ trong không gian 4. Chuyên đề 4: Góc trong không gian 5. Chuyên đề 5: Khoảng cách trong không gian Đặc biệt, tài liệu này bao gồm hệ thống bài tập trắc nghiệm được chọn lọc kỹ lưỡng, với đáp án chi tiết giúp học sinh hiểu rõ hơn về các khái niệm và quy luật. Đồng thời, nó cũng bám sát đề thi minh họa và đề thi tham khảo tốt nghiệp THPT của Bộ Giáo dục và Đào tạo, giúp học sinh tự tin hơn khi đối diện với kỳ thi sắp tới. Nội dung của tài liệu được thiết kế sao cho phù hợp với chương trình của Bộ Giáo dục và Đào tạo, giúp học sinh rèn luyện và củng cố kiến thức một cách hiệu quả. Mỗi chuyên đề đều có phần ôn tập, bài tập trắc nghiệm và đáp án, giúp học sinh tự học một cách có tổ chức và có kế hoạch.
Tài liệu hội thảo ôn thi tốt nghiệp THPT 2020 môn Toán sở GD ĐT Tây Ninh
Nội dung Tài liệu hội thảo ôn thi tốt nghiệp THPT 2020 môn Toán sở GD ĐT Tây Ninh Bản PDF - Nội dung bài viết Tài liệu ôn thi tốt nghiệp THPT 2020 môn Toán sở GD&ĐT Tây Ninh Tài liệu ôn thi tốt nghiệp THPT 2020 môn Toán sở GD&ĐT Tây Ninh Sytu hân hạnh giới thiệu đến quý thầy, cô giáo và các em học sinh khối 12 tài liệu hội thảo ôn thi tốt nghiệp THPT 2020 môn Toán sở GD&ĐT Tây Ninh. Bộ tài liệu bao gồm 123 trang chứa đựng tổng hợp lý thuyết, hướng dẫn giải các dạng toán và hệ thống bài tập trắc nghiệm có đáp án và lời giải chi tiết, giúp học sinh chuẩn bị tốt cho kỳ thi tốt nghiệp THPT môn Toán năm học 2019 – 2020. Nội dung chính của tài liệu hội thảo ôn thi tốt nghiệp THPT 2020 môn Toán sở GD&ĐT Tây Ninh được phân chia như sau: Phân tích cấu trúc đề minh họa kỳ thi tốt nghiệp THPT 2020 môn Toán, gồm các phần: Tổ hợp, xác suất: 2 câu Dãy số, cấp số: 1 câu Quan hệ vuông góc: 2 câu Ứng dụng đạo hàm, khảo sát hàm số: 12 câu Lũy thừa, mũ, lôgarit: 9 câu Nguyên hàm, tích phân: 5 câu Số phức: 5 câu Thể tích khối đa diện: 3 câu Khối tròn xoay: 5 câu Hình tọa độ không gian: 6 câu Số câu theo mức độ nhận thức: Nhận biết: 21 câu Thông hiểu: 17 câu Vận dụng thấp: 7 câu Vận dụng cao: 5 câu Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số Mũ và lôgarit Nguyên hàm, tích phân và ứng dụng Số phức Khối đa diện và khối tròn xoay Phương pháp tọa độ trong không gian Ôn tập kiến thức Toán lớp 11 Tài liệu được cung cấp dưới dạng file Word để giúp quý thầy, cô giáo dễ dàng sử dụng và phân phối cho học sinh.