Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát đợt 2 lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Đức Thọ Hà Tĩnh

Nội dung Đề khảo sát đợt 2 lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Đức Thọ Hà Tĩnh Bản PDF - Nội dung bài viết Đề khảo sát đợt 2 lớp 9 môn Toán năm 2022-2023 Đề khảo sát đợt 2 lớp 9 môn Toán năm 2022-2023 Chào quý thầy cô và các em học sinh lớp 9! Sytu xin giới thiệu đến quý vị đề khảo sát chất lượng đợt 2 môn Toán lớp 9 năm học 2022-2023 của phòng Giáo dục và Đào tạo huyện Đức Thọ, tỉnh Hà Tĩnh. Đề thi bao gồm đáp án, hướng dẫn giải chi tiết và thang điểm cho mã đề 01 và mã đề 02. Trích dẫn một số câu hỏi từ đề khảo sát: Cho hàm số bậc nhất y = ax + b. Tìm a và b biết rằng đồ thị hàm số đi qua điểm M(1,1) và cắt trục hoành tại điểm có hoành độ là 3. Cho đường thẳng (d): y = xm + 3. Tìm m để (d) cắt đường thẳng y = 2x + 1 tại điểm có tung độ bằng 1. Tại cửa hàng điện máy, giá niêm yết một chiếc máy vi tính và một máy in có tổng số tiền là 21,5 triệu đồng. Trong đợt khuyến mãi đầu xuân 2023, mỗi máy vi tính giảm giá 40% và mỗi máy in giảm giá 30%. Bác Quang đã mua trong đợt giảm giá này một máy vi tính và một máy in với tổng số tiền là 13,5 triệu đồng. Hỏi mỗi máy vi tính, máy in nói trên khi chưa giảm giá là bao nhiêu? Cho nửa đường tròn (O) đường kính AB và dây AC (C khác A và B). Gọi N là điểm chính giữa cung AC; I là giao điểm của bán kính ON với dây AC. Chứng minh ∆ANC cân. Mời quý thầy, cô và các em học sinh tham gia khảo sát đợt 2 và cùng trải nghiệm những bài toán thú vị trong đề thi. Chúc quý vị thành công và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát Toán 9 tháng 9 năm 2019 - 2020 trường Dịch Vọng Hậu - Hà Nội
Ngày …/09/2019, trường THCS Dịch Vọng Hậu, Cầu Giấy, Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán 9 tháng 9 năm học 2019 – 2020. Đề khảo sát Toán 9 tháng 9 năm 2019 – 2020 trường Dịch Vọng Hậu – Hà Nội đề số 01 gồm 04 bài toán dạng tự luận, đề thi gồm có 01 trang, học sinh làm bài trong khoảng thời gian 90 phút. [ads] Trích dẫn đề khảo sát Toán 9 tháng 9 năm 2019 – 2020 trường Dịch Vọng Hậu – Hà Nội : + Cho tam giác ABC vuông tại A (AB > AC), kẻ đường cao AH. a) Tính các cạnh và các góc của tam giác ABC biết BH = 9cm, CH = 4cm. b) Vẽ AD là tia phân giác của góc BAH, D thuộc BH. Chứng minh tam giác ACD cân. c) Chứng minh HD.BC = DB.AC. d) Gọi M là trung điểm của AB, E là giao điểm của hai đường thẳng MD và AH. Chứng minh CE // AD. Chú ý: Số đo góc làm tròn đến độ.
Đề kiểm tra Toán 9 tháng 9 năm 2019 - 2020 trường Archimedes Academy - Hà Nội
Với mục đích kiểm tra đánh giá chất lượng định kỳ môn Toán đối với học sinh khối lớp 9, vừa qua, trường THCS Archimedes Academy – Hà Nội đã tổ chức kỳ thi kiểm tra tập trung Toán 9 tháng 9 năm học 2019 – 2020. Đề kiểm tra Toán 9 tháng 9 năm 2019 – 2020 trường Archimedes Academy – Hà Nội gồm 2 mã đề: đề số 1 và đề số 2, đề thi gồm 05 bài toán dạng tự luận, thời gian làm bài 90 phút. [ads] Trích dẫn đề kiểm tra Toán 9 tháng 9 năm 2019 – 2020 trường Archimedes Academy – Hà Nội : + Cho đường tròn (O), đường kính AB = 2R. Gọi M là trung điểm của OB, đường thẳng d luôn đi qua M cắt (O) tại C và D. Gọi H là trung điểm của CD. a) Chứng minh H thuộc đường tròn đường kính OM. b) Giả sử CD = R√3, tính độ dài OH theo R và số đo góc COD. c) Gọi I là trực tâm của tam giác ACD. Chứng minh H là trung điểm của BI. d) Cho đường thẳng d thay đổi và luôn đi qua M. Chứng minh điểm I luôn nằm trên một đường tròn cố định. + Cho x, y, z là các số thực không âm thỏa mãn x + y + z = 3. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức N = √(x + y) + √(y + z) + √(z + x).
Đề khảo sát đầu năm Toán 9 năm 2019 - 2020 trường Thanh Xuân - Hà Nội
Với mục đích kiểm tra đánh giá chất lượng đầu năm học 2019 – 2020 để theo dõi tiến độ học tập của học sinh, vừa qua, trường THCS Thanh Xuân, Hà Nội đã tổ chức kỳ kiểm tra khảo sát đầu năm môn Toán 9 năm học 2019 – 2020. Đề khảo sát đầu năm Toán 9 năm 2019 – 2020 trường Thanh Xuân – Hà Nội với các bài toán thuộc chương trình Toán lớp 8, đề gồm 05 bài toán dạng tự luận. Trích dẫn đề khảo sát đầu năm Toán 9 năm 2019 – 2020 trường Thanh Xuân – Hà Nội : + Cho hình thang ABCD biết góc A = 90 độ, góc D = 90 độ và AB < DC. Hai đường chéo AC và BD vuông góc với nhau tại O. a) Cho AB = 9 cm và AD = 12 cm. Hãy: Tính tỉ số lượng giác của các góc nhọn và cạnh BD của tam giác ADB. Tính độ dài các đoạn thẳng AO, DO và AC. Kẻ BH vuông góc với DC tại H. Tính diện tích tam giác DOH. b) Chứng minh BH^2 = AB.CD. + Cho 2016 < x < 2017. Tìm giá trị nhỏ nhất của: S = 1/(x – 2016)^2 + 1/(2017 – x)^2 + 1/(x – 2016)(2017 – x).