Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán THCS năm 2022 - 2023 phòng GDĐT Lương Sơn - Hòa Bình

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán cấp THCS năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Lương Sơn, tỉnh Hòa Bình; kỳ thi được diễn ra vào ngày … tháng 02 năm 2023. Trích dẫn Đề học sinh giỏi Toán THCS năm 2022 – 2023 phòng GD&ĐT Lương Sơn – Hòa Bình : + Có hai can đựng dầu, can thứ nhất đang chứa 48 lít và can thứ hai đang chứa 32 lít. Nếu rót từ can thứ nhất sang cho đầy can thứ hai thì lượng dầu trong can thứ nhất chỉ còn lại một nửa thể tích của nó. Nếu rót từ can thứ hai sang cho đầy can thứ nhất thì lượng dầu trong can thứ hai chỉ còn lại một phần ba thể tích của nó. Tính thể tích của mỗi can. + Cho đường thẳng y = (m − 2)x – 2m + 1 (d) 1) Chứng minh rằng đường thẳng d luôn đi qua một điểm cố định với mọi giá trị của m 2) Tìm m để khoảng cách từ gốc tọa độ đến đường thẳng d có giá trị lớn nhất 3) Tìm m để đường thẳng d tạo với các trục tọa độ tam giác có diện tích bằng 1/2. + Cho đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB, vẽ nửa đường tròn (O) đường kính AB và các tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn này, kẻ tiếp tuyến cắt Ax, By theo thứ tự tại C và D. Gọi N là giao điểm của AD và BC. a) Chứng minh rằng: MN vuông góc với AB b) Gọi E là giao điểm của BM và Ax. Chứng minh rằng: AC = CE c) Gọi K là giao điểm của AD và đường tròn (O). Chứng minh rằng: BM.BE = AK.AD.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Đống Đa - Hà Nội
Thứ Bảy ngày 04 tháng 12 năm 2021, phòng Giáo dục và Đào tạo quận Đống Đa, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng học sinh giỏi môn Toán lớp 9 năm học 2021 – 2022. Đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT Đống Đa – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT Đống Đa – Hà Nội : + Cho biểu thức P a) Rút gọn biểu thức P. b) Tính giá trị của P. + Cho tam giác ABC vuông tại A (AB < AC), đường cao AH (H thuộc BC). Trên đoạn HC lấy điểm M sao cho HM = HA. Đường thẳng vuông góc với BC tại M cắt AC tại K. a) Chứng minh BKC đồng dạng với AMC và BK = AB. b) Gọi I là trung điểm BK. Tính số đo góc AHI. + Cho 81 điểm phân biệt nằm trong một hình vuông có cạnh bằng 1. Chứng minh rằng tồn tại 6 điểm trong các điểm đã cho nằm trong một đường tròn có bán kính bằng 1/5.
Đề thi HSG Toán 9 cấp huyện năm 2021 - 2022 phòng GDĐT Sơn Động - Bắc Giang
Đề thi HSG Toán 9 cấp huyện năm 2021 – 2022 phòng GD&ĐT Sơn Động – Bắc Giang được biên soạn theo hình thức đề thi trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 20 câu, chiếm 6,0 điểm, phần tự luận gồm 04 câu, chiếm 14,0 điểm, thời gian làm bài 120 phút, kỳ thi được diễn ra vào ngày 16 tháng 10 năm 2021, đề thi có đáp án trắc nghiệm và lời giải chi tiết tự luận.
Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Thái Hòa - Nghệ An
Đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT Thái Hòa – Nghệ An gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 150 phút.
Đề thi học sinh giỏi huyện Toán 9 năm 2021 - 2022 phòng GDĐT Như Thanh - Thanh Hoá
Đề thi học sinh giỏi huyện Toán 9 năm 2021 – 2022 phòng GD&ĐT Như Thanh – Thanh Hoá gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề thi học sinh giỏi huyện Toán 9 năm 2021 – 2022 phòng GD&ĐT Như Thanh – Thanh Hoá : + Tìm tất cả số nguyên tố p sao cho 4p2 + 1 và 6p2 + 1 đều là các số nguyên tố. + Cho nửa đường tròn tâm O đường kính AB = 2R. EF là dây cung di động trên nửa đường tròn sao cho E thuộc cung AF và EF = AB/2. Gọi H là giao điểm của AF, BE, C là giao điểm của AE, BF, I là giao điểm của CH, AB. 1. Chứng minh rằng tam giác ACI và tam giác ABE đồng dạng với nhau. 2. Đường thẳng AF cắt tiếp tuyến tại B ở N, các tiếp tuyến tại A, F của (O) cắt nhau ở M. Chứng minh: ON MB. 3. Xác định vị trí EF trên nửa đường tròn để tứ giác ABEF có diện tích lớn nhất. + Cho a, b, c là các số thực dương thỏa mãn: abc = 1. Hãy tìm giá trị nhỏ nhất của biểu thức P.