Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

395 bài tập trắc nghiệm thể tích khối đa diện cơ bản - Nguyễn Bảo Vương

Tài liệu 395 bài tập trắc nghiệm thể tích khối đa diện cơ bản – Nguyễn Bảo Vương gồm 85 trang với phần tóm tắt lý thuyết, công thức tính và 395 bài tập trắc nghiệm thể tích khối đa diện cơ bản, dành cho học sinh trung bình, có đáp án ở cuối tài liệu. Nội dung tài liệu : + ÔN TẬP 1: KIẾN THỨC CƠ BẢN HÌNH HỌC LỚP 9-10 + ÔN TẬP 2: KIẾN THỨC CƠ BẢN HÌNH HỌC LỚP 11 A. QUAN HỆ SONG SONG §1. ĐƯỜNG THẲNG VÀ MẶT PHẲNG SONG SONG I. Định nghĩa: Đường thẳng và mặt phẳng gọi là song song với nhau nếu chúng không có điểm nào chung. II. Các định lý Định lý 1 : Nếu đường thẳng d không nằm trên mp(P) và song song với đường thẳng a nằm trên mp(P) thì đường thẳng d song song với mp(P). Định lý 2 : Nếu đường thẳng a song song với mp(P) thì mọi mp(Q) chứa a mà cắt mp(P) thì cắt theo giao tuyến song song với a. Định lý 3 : Nếu hai mặt phẳng cắt nhau cùng song song với một đường thẳng thì giao tuyến của chúng song song với đường thẳng đó. §2.HAI MẶT PHẲNG SONG SONG I. Định nghĩa: Hai mặt phẳng được gọi là song song với nhau nếu chúng không có điểm nào chung. II. Các định lý Định lý 1 : Nếu mp(P) chứa hai đường thẳng a, b cắt nhau và cùng song song với mặt phẳng (Q) thì (P) và (Q) song song với nhau. Định lý 2 : Nếu một đường thẳng nằm một trong hai mặt phẳng song song thì song song với mặt phẳng kia. Định lý 3 : Nếu hai mặt phẳng (P) và (Q) song song thì mọi mặt phẳng (R) đã cắt (P) thì phải cắt (Q) và các giao tuyến của chúng song song. [ads] B. QUAN HỆ VUÔNG GÓC §1. ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG I. Định nghĩa: Một đường thẳng được gọi là vuông góc với một mặt phẳng nếu nó vuông góc với mọi đường thẳng nằm trên mặt phẳng đó. II. Các định lý Định lý 1 : Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau a và b cùng nằm trong mp(P) thì đường thẳng d vuông góc với mp(P). Định lý 2 : (Ba đường vuông góc) Cho đường thẳng a không vuông góc với mp(P) và đường thẳng b nằm trong (P). Khi đó, điều kiện cần và đủ để b vuông góc với a là b vuông góc với hình chiếu a’ của a trên (P). §2.HAI MẶT PHẲNG VUÔNG GÓC I. Định nghĩa: Hai mặt phẳng được gọi là vuông góc với nhau nếu góc giữa chúng bằng 90 độ. II. Các định lý Định lý 1: Nếu một mặt phẳng chứa một đường thẳng vuông góc với một mặt phẳng khác thì hai mặt phẳng đó vuông góc với nhau. Định lý 2: Nếu hai mặt phẳng (P) và (Q) vuông góc với nhau thì bất cứ đường thẳng a nào nằm trong (P), vuông góc với giao tuyến của (P) và (Q) đều vuông góc với mặt phẳng (Q). Định lý 3: Nếu hai mặt phẳng (P) và (Q) vuông góc với nhau và A là một điểm trong (P) thì đường thẳng a đi qua điểm A và vuông góc với (Q) sẽ nằm trong (P). Định lý 4: Nếu hai mặt phẳng cắt nhau và cùng vuông góc với mặt phẳng thứ ba thì giao tuyến của chúng vuông góc với mặt phẳng thứ ba. §3.KHOẢNG CÁCH 1. Khoảng cách từ 1 điểm tới 1 đường thẳng, đến 1 mặt phẳng: Khoảng cách từ điểm M đến đường thẳng a (hoặc đến mặt phẳng (P)) là khoảng cách giữa hai điểm M và H, trong đó H là hình chiếu của điểm M trên đường thẳng a ( hoặc trên mp(P)). 2. Khoảng cách giữa đường thẳng và mặt phẳng song song: Khoảng cách giữa đường thẳng a và mp(P) song song với a là khoảng cách từ một điểm nào đó của a đến mp(P). 3. Khoảng cách giữa hai mặt phẳng song song: là khoảng cách từ một điểm bất kỳ trên mặt phẳng này đến mặt phẳng kia. 4.Khoảng cách giữa hai đường thẳng chéo nhau: là độ dài đoạn vuông góc chung của hai đường thẳng đó. §4.GÓC 1. Góc giữa hai đường thẳng a và b là góc giữa hai đường thẳng a’ và b’ cùng đi qua một điểm và lần lượt cùng phương với a và b. 2. Góc giữa đường thẳng a không vuông góc với mặt phẳng (P) là góc giữa a và hình chiếu a’ của nó trên mp(P). 3. Góc giữa hai mặt phẳng là góc giữa hai đường thẳng lần lượt vuông góc với hai mặt phẳng đó. 4. Diện tích hình chiếu: Gọi S là diện tích của đa giác (H) trong mp(P) và S’ là diện tích hình chiếu (H’) của (H) trên mp(P’) thì S’ = Scosα, trong đó α là góc giữa hai mặt phẳng (P) và (P’). ÔN TẬP 3: KIẾN THỨC CƠ BẢN HÌNH HỌC LỚP 12 A. THỂ TÍCH KHỐI ĐA DIỆN LOẠI 1: THỂ TÍCH LĂNG TRỤ Dạng 1. Khối lăng trụ đứng có chiều cao hay cạnh đáy Dạng 2. Lăng trụ đứng có góc giữa đường thẳng và mặt phẳng. Dạng 3. Lăng trụ đứng có góc giữa 2 mặt phẳng Dạng 4. Khối lăng trụ xiên LOẠI 2: THỂ TÍCH KHỐI CHÓP Dạng 1. Khối chóp có cạnh bên vuông góc với đáy Dạng 2. Khối chóp có một mặt bên vuông góc với đáy Dạng 3. Khối chóp đều Dạng 4. Khối chóp & phương pháp tỷ số thể tích

Nguồn: toanmath.com

Đọc Sách

160 bài tập trắc nghiệm số phức - Trần Đình Thiên
Tài liệu gồm 17  trang với phần tóm tắt lý thuyết, công thức tính và 160 bài tập trắc nghiệm số phức, tài liệu được biên soạn bởi tác giả Trần Đình Thiên nhằm bổ sung thêm các bài toán trắc nghiệm số phức chất lượng để các em luyện tập thêm trong quá trình học nội dung Giải tích 12 chương 4. Trích dẫn tài liệu 160 bài tập trắc nghiệm số phức – Trần Đình Thiên : + Gọi A là điểm biểu diễn của số phức z = 2 + 5i và B là điểm biểu diễn của số phức z’ = -2 + 5i. Tìm mệnh đề đúng trong các mệnh đề sau: A. Hai điểm A và B đối xứng với nhau qua trục hoành. B. Hai điểm A và B đối xứng với nhau qua trục tung. C. Hai điểm A và B đối xứng với nhau qua gốc toạ độ O. D. Hai điểm A và B đối xứng với nhau qua đường thẳng y = x. [ads] + Gọi A là điểm biểu diễn của số phức z = 3 + 2i và B là điểm biểu diễn của số phức z’ = 2 + 3i. Tìm mệnh đề đúng trong các mệnh đề sau: A. Hai điểm A và B đối xứng với nhau qua trục hoành. B. Hai điểm A và B đối xứng với nhau qua trục tung. C. Hai điểm A và B đối xứng với nhau qua gốc toạ độ O. D. Hai điểm A và B đối xứng với nhau qua đường thẳng y = x. + Tập hợp các điểm trong mặt phẳng biểu diễn cho số phức z thoả mãn điều kiện z^2 là một số ảo là: A. Trục hoành (trừ gốc toạ độ O). B. Trục tung (trừ gốc toạ độ O). C. Hai đường thẳng y = ±x (trừ gốc toạ độ O). D. Đường tròn x^2 + y^2 = 1.
Tuyển tập 651 bài tập trắc nghiệm số phức cơ bản và nâng cao - Nguyễn Bảo Vương
Tài liệu gồm 95 trang tuyển chọn 416 bài tập trắc nghiệm số phức cơ bản và 235 bài tập trắc nghiệm số phức nâng cao có đáp án, tài liệu được biên soạn bởi thầy Nguyễn Bảo Vương nhằm cung cấp thêm ngân hàng đề thi trắc nghiệm số phức cho giáo viên trong quá trình giảng dạy và giúp học sinh có thêm nguồn đề số phức tham khảo, rèn luyện trong quá trình học chương trình Giải tích 12 chương 4. PHẦN 1 : 416 BÀI TẬP TRẮC NGHIỆM SỐ PHỨC CƠ BẢN Dạng toán 1. Các phép tính về số phức và các bài toán định tính. Các phép tính về số phức: Sử dụng các công thức cộng, trừ, nhân, chia và lũy thừa số phức. Số phức và thuộc tính của nó: + Tìm phần thực và phần ảo z = a + bi, suy ra phần thực a, phần ảo b. + Biểu diễn hình học của số phức. Dạng toán 2. Biểu diễn hình học của số phức và ứng dụng. Dạng toán 3. Căn bậc hai của số phức và phương trình bậc hai. Định nghĩa về căn bậc hai của số phức và những điểm cần lưu ý. Hướng dẫn phương pháp tìm căn bậc hai của số phức. Phương trình bậc hai với hệ số phức và phương pháp giải, định lý Vi-et. PHẦN 2 : 235 BÀI TẬP TRẮC NGHIỆM SỐ PHỨC NÂNG CAO – CỰC CAO Dạng toán 1. Các phép tính về số phức và các bài toán định tính. Dạng toán 2. Dạng lượng giác của số phức. Công thức De – Moivre: Có thể nói công thức De – Moivre là một trong những công thức thú vị và là nền tảng cho một loạt công thức quan trọng khác sau này như phép luỹ thừa, khai căn số phức, công thức Euler. Dạng toán 3. Cực trị của số phức. [ads] Trích dẫn tài liệu tuyển tập 651 bài tập trắc nghiệm số phức cơ bản và nâng cao – Nguyễn Bảo Vương : + Trên tập số phức, cho phương trình sau: (z + i)^4 + 4z^2 = 0. Có bao nhiêu nhận xét đúng trong số các nhận xét sau? 1. Phương trình vô nghiệm trên trường số thực. 2. Phương trình vô nghiệm trên trường số phức. 3. Phương trình không có nghiệm thuộc tập số thực. 4. Phương trình có bốn nghiệm thuộc tập số phức. 5. Phương trình chỉ có hai nghiệm là số phức. 6. Phương trình có hai nghiệm là số thực. + Cho số phức z thỏa |z – 1 + i| = 2. Chọn phát biểu đúng: A. Tập hợp điểm biểu diễn số phức z là một đường thẳng. B. Tập hợp điểm biểu diễn số phức z là một đường Parabol. C. Tập hợp điểm biểu diễn số phức z là một đường tròn có bán kính bằng 2. D. Tập hợp điểm biểu diễn số phức z là một đường tròn có bán kính bằng 4. + Cho số phức z thỏa |z + 2| = |1 – z|. Chọn phát biểu đúng: A. Tập hợp điểm biểu diễn số phức z là một đường thẳng. B. Tập hợp điểm biểu diễn số phức z là một đường Parabol. C. Tập hợp điểm biểu diễn số phức z là một đường tròn. D. Tập hợp điểm biểu diễn số phức z là một đường Elip.
Bài tập trắc nghiệm chuyên đề số phức - Đặng Việt Đông
Tài liệu gồm 36 trang được biên soạn bởi thầy Đặng Việt Đông bao gồm phần tóm tắt lý thuyết, công thức tính toán thường dùng và tuyển chọn các bài tập trắc nghiệm chuyên đề số phức thuộc chương trình Giải tích 12 chương 4. Các bài tập số phức trong tài liệu được phân loại dựa theo các dạng toán: + Số phức và các phép tính trên số phức. + Số phức và các tính chất. + Tìm số phức thỏa mãn điều kiện bài toán. + Số phức có môđun nhỏ nhất, lớn nhất (bài toán min – max số phức). + Phương trình, hệ phương trình trên tập số phức. + Biểu diễn hình học của số phức, tìm tập hợp điểm. [ads] Trích dẫn tài liệu bài tập trắc nghiệm chuyên đề số phức – Đặng Việt Đông : + Tập hợp các điểm trong mặt phẳng biểu diễn cho số phức z thoả mãn điều kiện z^2 là một số thực âm là: A. Trục hoành (trừ gốc toạ độ O). B. Trục tung (trừ gốc toạ độ O). C. Đường thẳng y = x (trừ gốc toạ độ O). D. Đường thẳng y = – x (trừ gốc toạ độ O). + Trong mặt phẳng phức, tập hợp điểm biểu diễn cho số phức z thỏa |z + 3 – 2i| là: A. Đường tròn tâm I(-3; 2), bán kính R = 4. B. Đường tròn tâm I(3; -2), bán kính R = 16. C. Đường tròn tâm I(3; -2), bán kính R = 4. D. Đường tròn tâm I(-3; 2), bán kính R = 16. + Gọi A là điểm biểu diễn của số phức z = 2 + 5i và B là điểm biểu diễn của số phức z’ = – 2 + 5i. Tìm mệnh đề đúng trong các mệnh đề sau: A. Hai điểm A và B đối xứng với nhau qua đường thẳng y = x. B. Hai điểm A và B đối xứng với nhau qua trục hoành. C. Hai điểm A và B đối xứng với nhau qua gốc tọa độ O. D. Hai điểm A và B đối xứng với nhau qua trục tung.
Các dạng bài tập cơ bản về Số phức - Đặng Việt Hùng
Tài liệu các dạng bài tập cơ bản về Số phức được biên soạn bởi thầy Đặng Việt Hùng gồm 28 trang tóm tắt lý thuyết, công thức tính và các bài toán số phức có lời giải chi tiết. Thông qua tài liệu, học sinh có thể nắm được phương pháp giải các bài toán số phức cơ bản thường bắt gặp trong chương trình Giải tích 12 chương 4. Khái quát nội dung tài liệu các dạng bài tập cơ bản về Số phức – Đặng Việt Hùng: BÀI 1 . MỞ ĐẦU VỀ SỐ PHỨC Phần 1. Khái niệm số phức. Một số phức z là một biểu thức dạng z = a + bi, trong đó a, b là những số thực và số i thỏa mãn i^2 = -1. Trong đó: i là đơn vị ảo, a được gọi là phần thực của số phức, b được gọi là phần ảo của số phức. Tập hợp các điểm biểu diễn số phức kí hiệu là C. Phần 2. Biểu diễn hình học của số phức. Cho số phức z = a + bi (a, b ∈ R) được biểu diễn bởi điểm M(a; b) (hay M(z)) trong mặt phẳng tọa độ Oxy (hay còn gọi là mặt phẳng phức). Trong đó: trục hoành Ox (trục thực) biểu diễn phần thực a, trục tung Oy (trục ảo) biểu diễn phần ảo b. Phần 3. Module của số phức. Cho số phức z = a + bi, module của số phức z kí hiệu là |z| và được tính theo biểu thức: |z| = √(a^2 + b^2). Phần 4. Số phức liên hợp. Cho số phức z = a + bi, số phức liên hợp của số phức z kí hiệu là z‾ và được tính theo biểu thức: z‾ = a – bi. Phần 5. Các phép toán về số phức. Các phép toán cơ bản về số phức bao gồm: phép cộng, trừ hai số phức, phép nhân hai số phức, phép chia cho số phức khác 0. Phần 6. Các tính chất của số phức. Cho số phức z = x + yi , ba tính chất sau của số phức được xếp vào 1 nhóm. Cho 2 số phức z1 = x1 + y1i và z2 = x2 + y2i, ba tính chất tiếp theo được xếp vào nhóm liên hợp. Cho 2 số phức z1 = x1 + y1i và z2 = x2 + y2i, ba tính chất tiếp theo được xếp vào nhóm module. [ads] BÀI 2 . CÁC DẠNG QUỸ TÍCH PHỨC Phần 1. Các dạng quỹ tích cơ bản. Đường thẳng: Quỹ tích các điểm M biểu diễn số phức z = x + yi là đường thẳng nếu như M(x;y) có tọa độ thỏa mãn phương trình đường thẳng: Ax + By + C = 0. Đường tròn: Quỹ tích các điểm M biểu diễn số phức z = x + yi là đường tròn nếu như M(x;y) có tọa độ thỏa mãn phương trình đường tròn (C) : (x – a)^2 + (y – b)^2 = R^2, trong đó I(a;b) là tâm đường tròn và R là bán kính đường tròn. Đường Elip: Quỹ tích các điểm M biểu diễn số phức z = x + yi là đường elip nếu như M(x;y) có tọa độ thỏa mãn phương trình đường elip (E): x^2/a^2 + y^2/b^2 = 1, trong đó a, b tương ứng là các bán trục lớn và bán trục nhỏ của elip. Phần 2. Một số dạng toán nâng cao về quỹ tích phức. Cho hai số phức z1 và z2 được biểu diễn bởi các điểm tương ứng là M1 và M2. Khi đó |z1 – z2| = M1M2. BÀI 3 . PHƯƠNG TRÌNH PHỨC Phần 1. Căn bậc hai số phức. Cho số phức z = a + bi, số phức w = x + yi được gọi là căn bậc hai của số phức z nếu w^2 = z hay (x + yi)^2 = a + bi. Phần 2. Phương trình phức bậc 2. BÀI 4 . DẠNG LƯỢNG GIÁC CỦA SỐ PHỨC 1. Khái niệm về dạng lượng giác của số phức. Cho số phức z = a + bi, số phức trên được gọi là dạng đại số của số phức. Số phức z = r(cosφ + isinφ) được gọi là dạng lượng giác của số phức, trong đó: r: là module của số phức, φ: là argument của số phức. 2. Cách chuyển đổi một số phức từ dạng đại số sang lượng giác. Để chuyển số phức z = a + bi sang dạng lượng giác z = r(cosφ + isinφ) ta phải tìm được module và argument của số phức. 3. Nhân và chia hai số phức dạng lượng giác. 4. Công thức Moiver và ứng dụng dạng lượng giác của số phức. Cho số phức z = r(cosφ + isinφ), khi đó z^n = [r(cosφ + isinφ)]n = r^n[cos(nφ) + isin(nφ)].