Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi lớp 8 môn Toán năm 2014 2015 phòng GD ĐT Bình Giang Hải Dương

Nội dung Đề thi học sinh giỏi lớp 8 môn Toán năm 2014 2015 phòng GD ĐT Bình Giang Hải Dương Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 8 năm 2014 - 2015 phòng GD&ĐT Bình Giang Hải Dương Đề thi học sinh giỏi Toán lớp 8 năm 2014 - 2015 phòng GD&ĐT Bình Giang Hải Dương Xin chào quý thầy cô và các em học sinh lớp 8! Sytu xin giới thiệu đến quý vị đề thi học sinh giỏi môn Toán lớp 8 năm 2014 - 2015 từ phòng GD&ĐT Bình Giang - Hải Dương. Đề thi này bao gồm đáp án, lời giải và hướng dẫn chấm điểm, giúp các em ôn tập và kiểm tra kiến thức của mình. Trích dẫn một số câu hỏi từ đề thi: Câu 1: Cho hình bình hành ABCD có đường chéo AC lớn hơn đường chéo BD. Gọi E, F lần lượt là hình chiếu của B và D xuống đường thẳng AC. Gọi H và K lần lượt là hình chiếu của C xuống đường thẳng AB và AD. Hãy chứng minh tứ giác BEDF là hình bình hành. Câu 2: Chứng minh rằng: CH.CD = CB.CK. Câu 3: Chứng minh rằng: AB.AH + AD.AK = AC2. Câu 4: Một người đi xe máy từ A đến B dự định mất 3 giờ 20 phút. Nếu người ấy tăng vận tốc thêm 5 km/h thì sẽ đến B sớm hơn 20 phút. Hãy tính khoảng cách AB. Câu 5: Cho biểu thức A. 1) Tìm ĐKXĐ rồi rút gọn biểu thức A. 2) Tính giá trị của biểu thức A biết |x - 7| = 4. Đây là những câu hỏi thú vị và đa dạng trong đề thi. Hy vọng các em sẽ thấy hứng thú và tìm hiểu để có thể giải quyết chúng một cách thành công. Chúc quý thầy cô và các em học sinh đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Triệu Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm định chất lượng học sinh giỏi môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Triệu Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 11 tháng 03 năm 2022. Trích dẫn đề học sinh giỏi Toán 8 năm 2021 – 2022 phòng GD&ĐT Triệu Sơn – Thanh Hóa : + Tìm nghiệm nguyên của phương trình: x2 + 2xy + 2x + 2y – 3y2 = 4. + Cho số tự nhiên n > 2 và số nguyên tố p thỏa mãn p – 1chia hết cho n đồng thời n3 – 1 chia hết cho p. Chứng minh rằng n + p là một số chính phương. + Cho tam giác ABC vuông tại A. Các tia phân giác của góc B và góc C cắt nhau tại I. Gọi D; E; F lần lượt là hình chiếu vuông góc của I lên BC; AB; AC. 1. Chứng minh: Tứ giác AEIF là hình vuông và ID = IE = IF. 2. Tia AI cắt DF tại K. a) Chứng minh rằng tam giác AIB đồng dạng tam giác AFK. b) Qua A kẻ đường thẳng vuông góc với BC, đường thẳng này cắt DF tại P. Gọi M là trung điểm của AB. Tia MI cắt cạnh AC tại Q. Chứng minh tam giác APQ cân. 3. Khi BC cố định, điểm A di chuyển nhưng vẫn thỏa mãn góc BAC = 90° và đoạn AI không đổi bằng a2. Tìm vị trí của A để chu vi tam giác AMQ nhỏ nhất.
Đề chọn học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Hải Hậu - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát chọn học sinh giỏi môn Toán lớp 8 năm học 2021 – 2022 phòng GD&ĐT Hải Hậu, tỉnh Nam Định.
Đề học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Nam Trực - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi Toán 8 năm 2021 – 2022 phòng GD&ĐT Nam Trực – Nam Định.
Đề học sinh giỏi Toán 8 năm 2020 - 2021 phòng GDĐT Cao Lộc - Lạng Sơn
Đề học sinh giỏi Toán 8 năm 2020 – 2021 phòng GD&ĐT Cao Lộc – Lạng Sơn gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề học sinh giỏi Toán 8 năm 2020 – 2021 phòng GD&ĐT Cao Lộc – Lạng Sơn : + Cho a và b là hai số tự nhiên. Biết rằng a chia cho 5 dư 3 và b chia cho 5 dư 2. Hỏi tích ab chia cho 5 dư bao nhiêu? + Giải phương trình. + Cho tam giác ABC vuông tại A (AC > AB), đường cao AH (H BC). Trên tia HC lấy điểm D sao cho HD = HA. Đường vuông góc với BC tại D cắt AC tại E. a) Chứng minh rằng hai tam giác BEC và ADC đồng dạng. Tính độ dài đoạn BE theo m = AB. b) Gọi M là trung điểm của đoạn BE. Chứng minh rằng hai tam giác BHM và BEC đồng dạng. Tính số đo của góc AHM. c) Tia AM cắt BC tại G. Chứng minh: BC AH HC.