Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Bắc Giang

Thứ Sáu ngày 17 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Bắc Giang tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Bắc Giang gồm có 02 trang với 20 câu trắc nghiệm và 05 câu tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Bắc Giang : + Một công ty X dự định điều động một số xe để chở 100 tấn hàng. Khi sắp khởi hành thì 5 xe được điều đi làm việc khác nên mỗi xe còn lại phải chở thêm 1 tấn hàng so với dự định. Tính số xe mà công ty X dự định điều động, biết mỗi xe chở khối lượng hàng như nhau. [ads] + Cho đường tròn tâm O, bán kính R = 3cm. Gọi A, B là hai điểm phân biệt cố định trên đường tròn (O;R) (AB không là đường kính). Trên tia đối của tia BA lấy một điểm M (M khác B). Qua M kẻ hai tiếp tuyến MC, MD với đường tròn đã cho (C, D là hai tiếp điểm). a) Chứng minh tứ giác OCMD nội tiếp trong một đường tròn. b) Đoạn thẳng OM cắt đường tròn (O;R) tại điểm E. Chứng minh rằng khi CMD = 60 độ thì E là trọng tâm của tam giác MCD. c) Gọi N là điểm đối xứng của M qua O. Đường thẳng đi qua O vuông góc với MN cắt các tia MC, MD lần lượt tại các điểm P và Q. Khi M di động trên tia đối của tia BA, tìm vị trí của điểm M để tứ giác MPNQ có diện tích nhỏ nhất. + Cho đoạn thẳng AC, B là điểm thuộc đoạn AC sao cho BC = 3BA. Gọi AT là một tiếp tuyến của đường tròn đường kính BC (T là tiếp điểm), BC = 6 cm. Độ dài đoạn thẳng AT bằng?

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán tuyển sinh 10 năm 2022 2023 phòng GD ĐT Tiền Hải Thái Bình
Nội dung Đề khảo sát Toán tuyển sinh 10 năm 2022 2023 phòng GD ĐT Tiền Hải Thái Bình Bản PDF - Nội dung bài viết Đề khảo sát Toán tuyển sinh 10 năm 2022-2023 phòng GD&ĐT Tiền Hải Thái Bình Đề khảo sát Toán tuyển sinh 10 năm 2022-2023 phòng GD&ĐT Tiền Hải Thái Bình Chào các thầy cô giáo và các em học sinh lớp 9! Đề khảo sát Toán lớp 9 cho tuyển sinh vào lớp 10 năm học 2022-2023 của phòng Giáo dục và Đào tạo huyện Tiền Hải, tỉnh Thái Bình sẽ giúp các em ôn tập và chuẩn bị tốt cho kỳ thi sắp tới. Đề khảo sát bao gồm các câu hỏi thú vị và bổ ích như: 1. Tính thể tích của một lon nước ngọt hình trụ khi biết bán kính đáy và đường cao. 2. Chứng minh tính chất của các tứ giác trong hình học. 3. Giải toán về biểu thức và tìm giá trị của biểu thức trong trường hợp cụ thể. Qua đề khảo sát này, các em sẽ được rèn luyện kỹ năng giải toán, tư duy logic và định hình kiến thức Toán một cách chặt chẽ. Hãy cùng nhau học tập và vượt qua mọi thách thức để đạt được kết quả tốt nhất trong kỳ thi sắp tới!
Bộ đề tham khảo môn Toán tuyển sinh 10 năm 2024 2025 sở GD ĐT TP Hồ Chí Minh
Nội dung Bộ đề tham khảo môn Toán tuyển sinh 10 năm 2024 2025 sở GD ĐT TP Hồ Chí Minh Bản PDF - Nội dung bài viết Bộ đề tham khảo môn Toán tuyển sinh 10 năm 2024 2025 sở GD ĐT TP Hồ Chí Minh Bộ đề tham khảo môn Toán tuyển sinh 10 năm 2024 2025 sở GD ĐT TP Hồ Chí Minh Tài liệu này bao gồm 139 trang, được phát hành bởi Hội Đồng Bộ Môn Toán Thành Phố Hồ Chí Minh. Được biên soạn để ôn thi tuyển sinh vào lớp 10 THPT năm học 2024 - 2025 tại Sở Giáo dục và Đào tạo thành phố Hồ Chí Minh, tập hợp các đề tham khảo môn Toán giúp giáo viên và học sinh lớp 9 hiểu rõ hình thức và cấu trúc đề thi. Đây là tài liệu hữu ích để giúp học sinh chuẩn bị tốt nhất cho kỳ thi tuyển sinh vào lớp 10 THPT năm học 2024 - 2025. Danh sách các đề tham khảo theo quận và huyện: Quận 1: Đề số 1, Đề số 2, Đề số 3 Quận 3: Đề số 1, Đề số 2, Đề số 3 Quận 4: Đề số 1, Đề số 2, Đề số 3 Quận 5: Đề số 1, Đề số 2, Đề số 3, Đề số 4 - Thực hành SG Và nhiều đề tham khảo khác theo từng quận, huyện khác nhau trong TP Hồ Chí Minh Đây là nguồn tư liệu quý giá không chỉ giúp học sinh thi tốt môn Toán mà còn giúp họ nắm vững cấu trúc đề thi và rèn luyện kỹ năng giải đề hiệu quả.
53 đề ôn tập tuyển sinh môn Toán năm 2024 2025 sở GD ĐT TP HCM
Nội dung 53 đề ôn tập tuyển sinh môn Toán năm 2024 2025 sở GD ĐT TP HCM Bản PDF - Nội dung bài viết Tài liệu ôn tập tuyển sinh môn Toán năm 2024 2025 của sở GD ĐT TP HCM Tài liệu ôn tập tuyển sinh môn Toán năm 2024 2025 của sở GD ĐT TP HCM Tài liệu này bao gồm 53 đề ôn tập tuyển sinh vào lớp 10 THPT môn Toán năm học 2024 – 2025 được biên tập bởi quý thầy, cô giáo nhóm LaTeX Toán THPT 2018. Tài liệu có tổng cộng 316 trang, các đề thi được biên soạn theo hình thức tự luận, thời gian làm bài 90 phút, và đi kèm với đáp án và lời giải chi tiết. Mỗi đề thi được đặt trong một context tương ứng với trường THCS nơi đóng. Ví dụ, đề số 1 là từ Trường THCS Á Châu, đề số 8 là từ PHÒNG GD&ĐT QUẬN 7. Như vậy, học sinh có thể thực hành trên nhiều đề thi khác nhau từ nhiều trường khác nhau để chuẩn bị tốt nhất cho kỳ thi tuyển sinh vào lớp 10. Với nội dung đa dạng và phong phú, tài liệu này giúp học sinh rèn luyện kỹ năng giải bài tập toán, cũng như quen thuộc với cấu trúc đề thi tuyển sinh. Đồng thời, việc có đáp án và lời giải chi tiết sẽ giúp học sinh hiểu rõ hơn về cách giải các bài tập khó, từ đó nâng cao khả năng làm bài trong kỳ thi sắp tới.
Đề tham khảo vào môn Toán năm 2024 2025 sở GD ĐT Phú Thọ
Nội dung Đề tham khảo vào môn Toán năm 2024 2025 sở GD ĐT Phú Thọ Bản PDF - Nội dung bài viết Đề tham khảo môn Toán vào lớp 10 năm 2024 - 2025 sở GD&ĐT Phú Thọ Đề tham khảo môn Toán vào lớp 10 năm 2024 - 2025 sở GD&ĐT Phú Thọ Chào mừng quý thầy cô và các em học sinh lớp 9 đến với đề tham khảo kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2024 - 2025 của sở Giáo dục và Đào tạo tỉnh Phú Thọ. Đề thi bao gồm 02 trang, với tỷ lệ 30% câu hỏi trắc nghiệm khách quan (12 câu) và 70% câu hỏi tự luận (04 câu). Thời gian làm bài là 120 phút, có đáp án và lời giải chi tiết. Trích đoạn từ Đề tham khảo môn Toán năm 2024 - 2025 sở GD&ĐT Phú Thọ: + Cho đường thẳng d: y = mx + 2 và parabol P: y = x^2. a) Cho điểm C có hoành độ là 2 thuộc parabol P. Tìm m để đường thẳng d đi qua C. b) Tìm m để đường thẳng d cắt parabol P tại hai điểm phân biệt D(x, y) và E(x, y) sao cho 2x + y = 15. + Một mảnh vườn hình chữ nhật có diện tích 150m^2. Biết rằng chiều dài hơn chiều rộng là 5m. Chiều rộng mảnh vườn đó là? + Cho đường tròn tâm O đường kính AB, điểm C cố định trên đoạn thẳng OB (C khác O và B). Điểm M di động trên đường tròn O. Đường thẳng d vuông góc với AB tại C cắt tia AM tại E ở ngoài đường tròn, d cắt đoạn MB ở F. a) Chứng minh các tứ giác AMFC và BCME nội tiếp đường tròn. b) Chứng minh BF//BM, BC//BA và AF vuông góc với EB. c) Tia EB cắt O tại N. Chứng minh A, F, N thẳng hàng. d) Chứng minh đường tròn ngoại tiếp tam giác AEF luôn đi qua một điểm cố định khác A. Hãy ôn luyện và chuẩn bị kỹ càng để vượt qua thử thách trong kỳ thi sắp tới. Chúc quý thầy cô và các em thành công!