Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hệ phương trình bậc nhất hai ẩn

Nội dung Chuyên đề hệ phương trình bậc nhất hai ẩn Bản PDF - Nội dung bài viết Chuyên đề hệ phương trình bậc nhất hai ẩn Chuyên đề hệ phương trình bậc nhất hai ẩn Tài liệu này bao gồm 77 trang, hướng dẫn cách giải các dạng toán liên quan đến hệ phương trình bậc nhất hai ẩn, giúp học sinh hiểu rõ chương trình Đại số lớp 9 chương 3: Hệ hai phương trình bậc nhất hai ẩn. A. Kiến thức trọng tâm Bộ tài liệu này chủ yếu tập trung vào việc giải các dạng toán đặc biệt về hệ phương trình bậc nhất hai ẩn và cách tiếp cận vấn đề. B. Các dạng toán và phương pháp giải I. Phương pháp thế Dạng Toán lớp 1: Giải hệ phương trình bằng phương pháp thế. Dạng Toán lớp 2: Giải hệ phương trình bằng phương pháp thế và quy về hệ phương trình bậc nhất hai ẩn. Dạng Toán lớp 3: Giải hệ phương trình bằng phương pháp đặt ẩn phụ. Dạng Toán lớp 4: Xác định điều kiện để hệ phương trình có nghiệm thỏa mãn điều kiện đã cho. II. Phương pháp cộng đại số Dạng Toán lớp 1: Giải hệ phương trình bằng phương pháp cộng đại số. Dạng Toán lớp 2: Giải hệ phương trình bằng phương pháp cộng đại số và quy về hệ phương trình bậc nhất hai ẩn. Dạng Toán lớp 3: Giải hệ phương trình bằng phương pháp đặt ẩn phụ. Dạng Toán lớp 4: Tìm điều kiện của tham số để hệ phương trình có nghiệm thỏa mãn điều kiện cho trước. III. Sử dụng phương pháp đặt ẩn phụ Chương này tập trung vào việc sử dụng phương pháp đặt ẩn phụ để giải các bài toán liên quan đến hệ phương trình bậc nhất hai ẩn. C. Bài tập trắc nghiệm hệ phương trình bậc nhất hai ẩn Bộ tài liệu này cũng cung cấp các bài tập trắc nghiệm để học sinh ôn tập và kiểm tra kiến thức của mình về chủ đề này. D. Đáp án và hướng dẫn giải Để giúp học sinh tự kiểm tra và tự học thêm, tài liệu kèm theo đáp án và hướng dẫn chi tiết cách giải các bài tập.

Nguồn: sytu.vn

Đọc Sách

Chứng minh tứ giác nội tiếp đường tròn
Tài liệu gồm 19 trang, hướng dẫn phương pháp giải bài toán chứng minh tứ giác nội tiếp đường tròn, đây là dạng toán thường gặp trong chương trình Toán 9 và trong các đề tuyển sinh vào lớp 10 môn Toán. 1. Kiến thức cơ bản : Tứ giác nội tiếp đường tròn là tứ giác có bốn đỉnh nằm trên một đường tròn. Đường tròn đó được gọi là đường tròn ngoại tiếp tứ giác. 2. Các phương pháp chứng minh tứ giác nội tiếp đường tròn : + Phương pháp 1: Chứng minh bốn đỉnh của tứ giác cùng cách đều một điểm. + Phương pháp 2: Chứng minh tứ giác có hai góc đối diện bù nhau (tổng hai góc đối diện bằng 180 độ). + Phương pháp 3: Chứng minh hai đỉnh cùng nhìn đoạn thẳng tạo bởi hai điểm còn lại hai góc bằng nhau. Các bài toán trong tài liệu được sắp xếp theo các mức độ nhận thức: nhận biết, thông hiểu, vận dụng thấp và vận dụng cao; có đáp án và lời giải chi tiết. Trích dẫn tài liệu chứng minh tứ giác nội tiếp đường tròn: + Cho hình thang ABCD (AB CD AB CD) có 0 C D 60 CD AD 2. Chứng minh bốn điểm A B C D cùng thuộc một đường tròn. Hướng dẫn giải: Gọi I là trung điểm CD, ta có IC AB ICBA IC AB là hình hành BC AI (1). Tương tự AD BI (2). ABCD là hình thang có 0 C D 60 nên ABCD là hình thang cân (3). Từ (1), (2), (3) ta có hai tam giác ICB IAD đều hay IA IB IC ID hay bốn điểm A B C D cùng thuộc một đường tròn. + Cho hình thoi ABCD. Gọi O là giao điểm hai đường chéo. M N R và S lần lượt là hình chiếu của O trên AB BC CD và DA. Chứng minh bốn điểm M N R và S cùng thuộc một đường tròn. Do ABCD là hình thoi nên O là trung điểm của AC BD AC BD là phân giác góc A B C D nên MAO SAO NCO PDO OM ON OP OS hay bốn điểm M N R và S cùng thuộc một đường tròn. + Cho tam giác ABC có các đường cao BH và CK. Chứng minh B K H C cùng nằm trên một đường tròn. Xác định tâm đường tròn đó. Hướng dẫn giải: Gọi I là trung điểm CB do CHB CKB vuông tại H K nên IC IB IK IH hay B K H C cùng nằm trên một đường tròn tâm I.
Giải bài toán bằng cách lập phương trình - hệ phương trình
Tài liệu gồm 76 trang, hướng dẫn phương pháp giải bài toán bằng cách lập phương trình – hệ phương trình, giúp học sinh lớp 9 tham khảo khi học chương trình Toán 9 và ôn thi vào lớp 10 môn Toán. LOẠI 1 : BÀI TOÁN LIÊN QUAN TỚI DIỆN TÍCH, TAM GIÁC, TỨ GIÁC. A. TÓM TẮT LÝ THUYẾT – PHƯƠNG PHÁP GIẢI I. Các bước giải Bước 1: Lập phương trình hoặc hệ phương trình: + Chọn ẩn, đơn vị cho ẩn, điều kiện thích hợp cho ẩn. + Biểu đạt các đại lượng khác theo ẩn (chú ý thống nhất đơn vị). + Dựa vào các dữ kiện, điều kiện của bài toán để lập phương trình hoặc hệ phương trình. Bước 2: Giải phương trình hoặc hệ phương trình. Bước 3: Nhận định, so sánh kết quả bài toán, dựa vào điều kiện tìm kết quả thích hợp, trả lời, nêu rõ đơn vị của đáp số. II. Các công thức liên quan + Diện tích tam giác vuông = nữa tích hai cạnh góc vuông. + Diện tích hình chữ nhật = dài nhân rộng. + Diện tích hình vuông = cạnh nhân cạnh. B. CÁC VÍ DỤ MẪU C. BÀI TẬP RÈN LUYỆN D. BÀI TẬP VỀ NHÀ LOẠI 2 : BÀI TOÁN NĂNG SUẤT. A. TÓM TẮT LÝ THUYẾT – PHƯƠNG PHÁP GIẢI I. Các bước giải Bước 1: Lập phương trình hoặc hệ phương trình: + Chọn ẩn, đơn vị cho ẩn, điều kiện thích hợp cho ẩn. + Biểu đạt các đại lượng khác theo ẩn (chú ý thống nhất đơn vị). + Dựa vào các dữ kiện, điều kiện của bài toán để lập phương trình hoặc hệ phương trình. Bước 2: Giải phương trình hoặc hệ phương trình. Bước 3: Nhận định, so sánh kết quả bài toán, tìm kết quả thích hợp, trả lời, nêu rõ đơn vị của đáp số. II. Các công thức liên quan N = 1/t; t = 1/N; CV = N.t. Trong đó: N: là năng suất làm việc; t: là thời gian hoàn thành công việc; 1: là công việc cần thực hiện; CV: số công việc thực hiện trong thời gian t. B. CÁC VÍ DỤ MẪU C. BÀI TẬP RÈN LUYỆN D. BÀI TẬP VỀ NHÀ LOẠI 3 : BÀI TOÁN LIÊN QUAN TỚI CHUYỂN ĐỘNG. A. TÓM TẮT LÝ THUYẾT – PHƯƠNG PHÁP GIẢI I. Các bước giải Bước 1: Lập phương trình hoặc hệ phương trình: + Chọn ẩn, đơn vị cho ẩn, điều kiện thích hợp cho ẩn. + Biểu đạt các đại lượng khác theo ẩn (chú ý thống nhất đơn vị). + Dựa vào các dữ kiện, điều kiện của bài toán để lập phương trình hoặc hệ phương trình. Bước 2: Giải phương trình hoặc hệ phương trình. Bước 3: Nhận định, so sánh kết quả bài toán tìm kết quả thích hợp, trả lời, nên rõ đơn vị của đáp số. II. Các công thức liên quan + Quãng đường = Vận tốc . Thời gian. + v_xuôi = v_thực + v_nước. + v_ngược = v_thực – v_nước. + v_xuôi – v_ngược = 2v_nước. B. CÁC VÍ DỤ MẪU C. BÀI TẬP RÈN LUYỆN D. BÀI TẬP VỀ NHÀ LOẠI 4 : BÀI TOÁN LIÊN QUAN TỚI CÔNG VIỆC – NƯỚC CHẢY. A. TÓM TẮT LÝ THUYẾT – PHƯƠNG PHÁP GIẢI I. Các bước giải Bước 1: Lập phương trình hoặc hệ phương trình: + Chọn ẩn, đơn vị cho ẩn, điều kiện thích hợp cho ẩn. + Biểu đạt các đại lượng khác theo ẩn (chú ý thống nhất đơn vị). + Dựa vào các dữ kiện, điều kiện của bài toán để lập phương trình hoặc hệ phương trình. Bước 2: Giải phương trình hoặc hệ phương trình. Bước 3: Nhận định, so sánh kết quả bài toán, tìm kết quả thích hợp, trả lời, nêu rõ đơn vị của đáp số. II. Các công thức liên quan + Quãng đường = Vận tốc . Thời gian. + v_xuôi = v_thực + v_nước. + v_ngược = v_thực – v_nước. + v_xuôi – v_ngược = 2v_nước. B. CÁC VÍ DỤ MẪU C. BÀI TẬP RÈN LUYỆN D. BÀI TẬP VỀ NHÀ LOẠI 5 : CÁC BÀI TOÁN KHÁC. A. TÓM TẮT LÝ THUYẾT – PHƯƠNG PHÁP GIẢI I. Các bước giải Bước 1: Lập phương trình hoặc hệ phương trình: + Chọn ẩn, đơn vị cho ẩn, điều kiện thích hợp cho ẩn. + Biểu đạt các đại lượng khác theo ẩn (chú ý thống nhất đơn vị). + Dựa vào các dữ kiện, điều kiện của bài toán để lập phương trình hoặc hệ phương trình. Bước 2: Giải phương trình hoặc hệ phương trình. Bước 3: Nhận định, so sánh kết quả bài toán, tìm kết quả thích hợp, trả lời, nêu rõ đơn vị của đáp số. II. Các lưu ý thêm + Toán nồng độ dung dịch: Biết rằng m lít chất tan trong M lít dung dịchthì nồng độ phàn trăm là m/M.100%. + Toán nhiệt lượng: m Kg nước giảm t0C thì toả ra một nhiệt lượng Q = m.t (Kcal). m Kg nước tăng t0C thì thu vào một nhiệt lượng Q = m.t (Kcal). + Toán lãi suất: 1 n A A r n với An: vốn sau n chu kỳ (năm, tháng, …); A: vốn ban đầu; n số chu kỳ (năm, tháng,…). B. CÁC VÍ DỤ MẪU C. BÀI TẬP RÈN LUYỆN D. BÀI TẬP VỀ NHÀ
Hàm số, đồ thị và sự tương giao - Dương Minh Hùng
Tài liệu gồm 28 trang, được biên soạn bởi thầy giáo Dương Minh Hùng, phân dạng và hướng dẫn giải các dạng toán về chủ đề hàm số, đồ thị và sự tương giao, giúp học sinh lớp 9 tham khảo khi học chương trình Toán 9 và ôn thi vào lớp 10 môn Toán. A. Tóm tắt lý thuyết I. Hàm số bậc nhất 1. Khái niệm hàm số bậc nhất. 2. Tính chất. 3. Đồ thị của hàm số y = ax + b (a khác 0). 4. Cách vẽ đồ thị hàm số y = ax + b (a khác 0). 5. Vị trí tương đối của hai đường thẳng. 6. Hệ số góc của đường thẳng y = ax + b. 7. Một số phương trình đường thẳng đặc biệt. II. Hàm số bậc hai 1. Khái niệm hàm số bậc hai. 2. Tính chất 3. Đồ thị của hàm số y = ax2 (a khác 0). 4. Cách vẽ đồ thị hàm số y = ax2 (a khác 0). 5. Quan hệ giữa Parabol y = ax2 (a khác 0) và đường thẳng y = mx + n (m khác  0). B. Phân dạng toán cơ bản Dạng toán 1. Vẽ đồ thị hàm số. Dạng toán 2. Tìm tọa độ giao điểm của đường thẳng và Parabol. Dạng toán 3. Tìm phương trình đường thẳng, phương trình Parabol. Dạng toán 4. Tìm điều kiện của tham số m thỏa mãn yêu cầu cho trước. C. Bài tập rèn luyện
Phương trình bậc hai, hệ thức Vi-ét và ứng dụng - Dương Minh Hùng
Tài liệu gồm 26 trang, được biên soạn bởi thầy giáo Dương Minh Hùng, phân dạng và hướng dẫn giải các dạng toán về chủ đề phương trình bậc hai, hệ thức Vi-ét và ứng dụng, giúp học sinh lớp 9 tham khảo khi học chương trình Toán 9 và ôn thi vào lớp 10 môn Toán. A. Tóm tắt lý thuyết 1. Công thức nghiệm. 2. Công thức nghiệm thu gọn. 3. Định lí Vi-ét. 4. Ứng dụng Vi-ét (nhẫm nghiệm đặc biệt của phương trình bậc hai). 5. Các ứng dụng vào giải toán chứa tham số. B. Phân dạng toán cơ bản Dạng 1. Giải phương trình quy về bậc nhất. Dạng 2. Giải phương trình bậc hai. Dạng 3. Tính giá trị biểu thức nghiệm dùng Vi-ét. Dạng 4. Toán tham số m với ứng dụng định lý Vi-ét. C. Bài tập rèn luyện