Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Hoàng Mai Nghệ An

Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Hoàng Mai Nghệ An Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 năm 2022-2023 phòng GD&ĐT Hoàng Mai Nghệ An Đề thi học sinh giỏi Toán lớp 9 năm 2022-2023 phòng GD&ĐT Hoàng Mai Nghệ An Các em học sinh lớp 9 thân mến, Sytu xin giới thiệu đến quý thầy cô và các bạn đề thi chọn học sinh giỏi cấp thị xã môn Toán lớp 9 năm học 2022-2023 của phòng Giáo dục và Đào tạo thị xã Hoàng Mai, tỉnh Nghệ An. Trích dẫn một số câu hỏi trong đề thi: 1. Cho tam giác ABC có 3 góc nhọn, vẽ đường cao AD và BE. Gọi H là trực tâm của tam giác ABC. a) Chứng minh: AD.DH = DB.DC và tanB.tanC = AD/HD. b) Chứng minh rằng các đường thẳng MI luôn đi qua một điểm cố định khi M là điểm di động trên đoạn thẳng BC và I là giao điểm của các đường thẳng CH và BK. 2. Cho tam giác ABC vuông cân tại A và M là điểm di động trên đường thẳng BC (M khác B, C). Hình chiếu của M trên các đường thẳng AB và AC tương ứng là H và K. Gọi I là giao điểm các đường thẳng CH và BK. Chứng minh rằng các đường thẳng MI luôn đi qua một điểm cố định. 3. Cho tam giác ABC có độ dài các cạnh là a, b, c sao cho thỏa mãn hệ thức 20bc + 11ac + 1982ab = 2022. Tìm giá trị nhỏ nhất của biểu thức M (trong đó p là nửa chu vi tam giác ABC). Chúc các em học sinh tham gia đề thi đạt kết quả cao, hãy tự tin và cố gắng hết mình để giải quyết các bài toán thú vị này!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 9 năm 2023 - 2024 trường THCS Hà Huy Tập - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát học sinh giỏi môn Toán 9 năm học 2023 – 2024 trường THCS Hà Huy Tập, thành phố Vinh, tỉnh Nghệ An; đề gồm 01 trang với 04 câu tự luận, thời gian làm bài 150 phút.
Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Phú Xuyên - Hà Nội (Vòng 2)
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Phú Xuyên, thành phố Hà Nội (Vòng 2). Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Phú Xuyên – Hà Nội (Vòng 2) : + Tìm số nguyên tố p sao cho 2p + 1 bằng lập phương của một số tự nhiên. + Cho nửa đường tròn tâm O đường kính AB. Gọi C là một điểm nằm trên nữa đường tròn (O) (C khác A, C khác B). Gọi H là hình chiếu vuông góc của C trên AB, D là điểm đối xứng với A qua C, I là trung điểm của CH, J là trung điểm của DH. a) Chứng minh CH.HI = HB.CJ b) Gọi E là giao điểm của HD và BI. Chứng minh HE.HD = HC2. c) Xác định vị trí của điểm C trên nửa đường tròn (O) để AH + CH đạt giá trị lớn nhất. + Trên bảng, người ta viết các số tự nhiên liên tiếp từ 1 đến 100 sau đó thực hiện trò chơi như sau: Mỗi lần xóa hai số a, b bất kỳ trên bảng và viết một số mới bằng a + b – 2 lên bảng. Việc làm này thực hiện liên tục, hỏi sau 99 bước số cuối cùng còn lại trên bảng là bao nhiêu? Tại sao?
Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Phúc Yên - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Phúc Yên, tỉnh Vĩnh Phúc; đề thi gồm 01 trang với 10 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Phúc Yên – Vĩnh Phúc : + Nhân ngày Tết Trung thu, một rạp chiếu phim phục vụ khán giả một bộ phim hoạt hình với quy định về giá bán vé như sau: + Loại I (dành cho trẻ từ 6 đến 13 tuổi): 50.000đ một vé. + Loại II (dành cho người trên 13 tuổi): 100.000đ một vé. Lãnh đạo rạp chiếu phim tính được rằng: Để không phải bù lỗ số tiền bán vé thu được phải đạt tối thiểu 20 triệu đồng. Hết thời gian bán vé, nhân viên báo cáo với lãnh đạo tổng số vé bán được là 500 vé. Lãnh đạo rạp chiếu phim khẳng định ngay là không phải bù lỗ. Em hãy giải thích khẳng định đó? Số tiền lãi rạp thu được tối thiểu là bao nhiêu, biết rằng mỗi trẻ em phải có ít nhất một người lớn đi kèm. + Cho ba điểm A, O, B thẳng hàng (O nằm giữa A và B). Kẻ hai tia Ax, By cùng vuông góc và cùng phía với AB. Dựng góc vuông uOv, tia Ou cắt Ax tại C, tia Ov cắt By tại D. Cho OA = a, OB = b, OC = 2a. Tính theo a, b diện tích hình thang ABDC. + Cho tam giác đều ABC, E là điểm thuộc cạnh AC và không trùng với A, K là trung điểm của AE. Đường thẳng đi qua I và vuông góc với AB tại F cắt đường thẳng đi qua C và vuông góc với BC tại D. a) Chứng minh BCKF là hình thang cân. b) Tìm vị trí của E sao cho đoạn KD ngắn nhất.
Đề HSG Toán THCS cấp huyện năm 2023 - 2024 phòng GDĐT Diên Khánh - Khánh Hòa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán THCS cấp huyện năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Diên Khánh, tỉnh Khánh Hòa; kỳ thi được diễn ra vào thứ Tư ngày 04 tháng 10 năm 2023. Trích dẫn Đề HSG Toán THCS cấp huyện năm 2023 – 2024 phòng GD&ĐT Diên Khánh – Khánh Hòa : + Cho a, b, c là ba số nguyên phân biệt và đa thức P(x) có hệ số nguyên. Chứng minh rằng ít nhất một trong các đẳng thức sau là sai: P(a) = b; P(b) = c; P(c) = a. + Tìm tất cả các số nguyên tố p để p vừa là tổng vừa là hiệu của hai số nguyên tố. + Cho tứ giác ABCD có ABD = ACD = 90°. Gọi I, K theo thứ tự là hình chiếu vuông góc của B, C trên cạnh AD. Gọi M là giao điểm của CI và BK, O là giao điểm của AC và BD. Qua O vẽ OE vuông góc với BI tại E. a) Chứng minh rằng: OB.IB = OE.AB. b) Chứng minh rằng: OM vuông góc AD. c) Gọi H là giao điểm của AB và DC, L là giao điểm của OM và AD. Chứng minh rằng?