Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Bình Giang Hải Dương

Nội dung Đề thi HSG huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Bình Giang Hải Dương Bản PDF Đề thi HSG huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Bình Giang Hải Dương là bài kiểm tra chọn lọc nhằm tìm ra những học sinh giỏi ở cấp huyện. Đề thi gồm 05 bài toán tự luận, đòi hỏi các em phải có kiến thức sâu rộng và khả năng giải quyết vấn đề tốt. Thời gian làm bài là 120 phút, đủ để các em có thể suy nghĩ và trả lời đúng câu hỏi.

Một trong những bài toán trong đề thi là phân tích đa thức, yêu cầu học sinh tìm a và b sao cho đa thức P(x) chia hết cho đa thức Q(x). Đây là bài toán cần sự chính xác và logic trong suy luận để tìm ra đáp án chính xác.

Bài toán khác liên quan đến biểu thức và tam giác, yêu cầu học sinh chứng minh đa dạng kiến thức và khả năng áp dụng vào thực tế. Các em cần phải hiểu rõ về các định lý và quy tắc liên quan để có thể giải quyết bài toán một cách chính xác.

Đề thi còn có đáp án, lời giải chi tiết và hướng dẫn chấm điểm, giúp các em tự kiểm tra và rút kinh nghiệm sau khi hoàn thành bài thi. Đây là cơ hội để các em thử sức, rèn luyện và phát triển kiến thức môn Toán một cách toàn diện.

Cuối cùng, đề thi HSG huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Bình Giang Hải Dương không chỉ là bài kiểm tra trí tuệ mà còn là cơ hội để các em thể hiện khả năng và đam mê với môn học. Chúc các em thành công và đạt kết quả cao trong bài thi này!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Triệu Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm định chất lượng học sinh giỏi môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Triệu Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 11 tháng 03 năm 2022. Trích dẫn đề học sinh giỏi Toán 8 năm 2021 – 2022 phòng GD&ĐT Triệu Sơn – Thanh Hóa : + Tìm nghiệm nguyên của phương trình: x2 + 2xy + 2x + 2y – 3y2 = 4. + Cho số tự nhiên n > 2 và số nguyên tố p thỏa mãn p – 1chia hết cho n đồng thời n3 – 1 chia hết cho p. Chứng minh rằng n + p là một số chính phương. + Cho tam giác ABC vuông tại A. Các tia phân giác của góc B và góc C cắt nhau tại I. Gọi D; E; F lần lượt là hình chiếu vuông góc của I lên BC; AB; AC. 1. Chứng minh: Tứ giác AEIF là hình vuông và ID = IE = IF. 2. Tia AI cắt DF tại K. a) Chứng minh rằng tam giác AIB đồng dạng tam giác AFK. b) Qua A kẻ đường thẳng vuông góc với BC, đường thẳng này cắt DF tại P. Gọi M là trung điểm của AB. Tia MI cắt cạnh AC tại Q. Chứng minh tam giác APQ cân. 3. Khi BC cố định, điểm A di chuyển nhưng vẫn thỏa mãn góc BAC = 90° và đoạn AI không đổi bằng a2. Tìm vị trí của A để chu vi tam giác AMQ nhỏ nhất.
Đề chọn học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Hải Hậu - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát chọn học sinh giỏi môn Toán lớp 8 năm học 2021 – 2022 phòng GD&ĐT Hải Hậu, tỉnh Nam Định.
Đề học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Nam Trực - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi Toán 8 năm 2021 – 2022 phòng GD&ĐT Nam Trực – Nam Định.
Đề học sinh giỏi Toán 8 năm 2020 - 2021 phòng GDĐT Cao Lộc - Lạng Sơn
Đề học sinh giỏi Toán 8 năm 2020 – 2021 phòng GD&ĐT Cao Lộc – Lạng Sơn gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề học sinh giỏi Toán 8 năm 2020 – 2021 phòng GD&ĐT Cao Lộc – Lạng Sơn : + Cho a và b là hai số tự nhiên. Biết rằng a chia cho 5 dư 3 và b chia cho 5 dư 2. Hỏi tích ab chia cho 5 dư bao nhiêu? + Giải phương trình. + Cho tam giác ABC vuông tại A (AC > AB), đường cao AH (H BC). Trên tia HC lấy điểm D sao cho HD = HA. Đường vuông góc với BC tại D cắt AC tại E. a) Chứng minh rằng hai tam giác BEC và ADC đồng dạng. Tính độ dài đoạn BE theo m = AB. b) Gọi M là trung điểm của đoạn BE. Chứng minh rằng hai tam giác BHM và BEC đồng dạng. Tính số đo của góc AHM. c) Tia AM cắt BC tại G. Chứng minh: BC AH HC.