Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kỳ 1 Toán 11 năm học 2018 - 2019 trường THPT Ứng Hòa A - Hà Nội

Đề thi học kỳ 1 Toán 11 năm học 2018 – 2019 trường THPT Ứng Hòa A – Hà Nội được chia sẻ bởi giáo viên nhà trường, đề có mã 112 gồm 06 trang với 50 câu hỏi và bài toán hình thức trắc nghiệm khách quan, học sinh làm bài trong 90 phút (không tính khoảng thời gian giáo viên phát đề), kỳ thi nhằm đánh giá lại toàn bộ kiến thức Toán 11 học sinh đã được truyền đạt trong suốt kỳ học vừa qua. Trích dẫn đề thi học kỳ 1 Toán 11 năm học 2018 – 2019 trường THPT Ứng Hòa A – Hà Nội : + Ngày nhỏ, trẻ con thường hay chơi trò chơi chiếu bóng. Chúng khoét một hình chữ nhật trên một tấm bìa, rồi để tấm bìa song song với tường nhà. Sau đó chúng chiếu đèn pin vào ô chữ nhật trên tấm bìa để ảnh sáng lọt qua và in hình trên bức tường. Cho biết khảng cách từ tấm bìa đến bức tường bằng 3 lần khảng cách từ dây tóc bóng đèn đến tấm bìa. Hỏi diện tích khung hình in trên tường to gấp mấy lần khung hình chữ nhật trên tấm bìa? + Trong hình hộp, từ một đỉnh ta đi theo 3 cạnh của hộp ta sẽ gặp 3 đỉnh khác, 3 đỉnh đó tạo thành một tam giác, gọi là tam giác chéo của hình hộp. Có 8 đỉnh nên sẽ có 8 tam giác chéo, các tam giác chéo được chia làm 4 cặp đối diện ứng với hai đỉnh đối diện của hình hộp. Có bao nhiêu phát biểu đúng trong các phát biểu sau? + Hai tam giác chéo đối diện luôn bằng nhau. + Hai tam giác chéo đối diện nằm trên hai mặt phẳng song song. + Hai tam giác chéo đối diện là các tam giác đều. [ads] + Một sinh viên ra trường đi phỏng vấn xin việc tại một công ty. Sau khi phỏng vấn xong các kiến thức chuyên môn, giám đốc đưa ra 3 lựa chọn. Một là anh sẽ vào làm việc trong công ty với lương tháng cố định là 5.000.000 đồng một tháng. Hai là anh sẽ làm viêc với mức lương khởi điểm 3.000.000 đồng cho tháng đầu, sau mỗi tháng anh sẽ được tăng thêm 400.000 đồng cho các tháng sau. Ba là anh sẽ làm việc với mức lương khởi điểm 4.000.000 đồng cho tháng đầu, sau mỗi tháng anh sẽ được tăng thêm 200.000 đồng cho các tháng sau. Thời gian thử việc theo cả 3 phương án là 12 tháng. Hỏi anh sinh viên sẽ lựa chọn phương án nào để có lợi nhất về thu nhập trong thời gian thử việc.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 1 Toán 11 năm 2019 - 2020 trường THPT Hàn Thuyên - TP HCM
Kỳ thi cuối học kì 1 môn Toán 11 là kỳ thi rất quan trọng đối với các em học sinh lớp 11, điểm số của kỳ thi này tác động lớn đến điểm trung bình môn Toán 11 nói riêng và xếp loại học lực nói chung. Để giúp các em đạt được điểm số cao trong kì thi HK1 Toán 11 sắp tới, chọn lọc và chia sẻ đến các em bản PDF đề thi + đáp án/đáp số + lời giải chi tiết đề thi học kì 1 Toán 11 năm học 2019 – 2020 trường THPT Hàn Thuyên, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 1 Toán 11 năm 2019 – 2020 trường THPT Hàn Thuyên – TP HCM : + Một hộp chứa 4 quả cầu đỏ, 5 quả cầu xanh và 7 quả cầu vàng. Lấy ngẫu nhiên cùng lúc 4 quả cầu từ hộp đó. Tính xác suất để trong 4 quả cầu được lấy ra có đúng 1 quả cầu màu đỏ và không quá 2 quả cầu màu vàng. + Trong mặt phẳng Oxy, cho hai điểm A(1;3), B(3;0) và đường thẳng có phương trình (d): 3x – 2y + 1 = 0. Tìm ảnh (d’) của (d) qua phép tịnh tiến theo véctơ AB. + Cho tứ diện ABCD có M, N, P lần lượt là trung điểm AB, BC, CD. Gọi G là trọng tâm tam giác BCD; AG cắt MP tại I, AN cắt CM tại J. Chứng minh rằng ba điểm D, I, J thẳng hàng.
Đề thi học kì 1 Toán 11 năm 2019 - 2020 trường THPT Bùi Thị Xuân - TP HCM
Kỳ thi cuối học kì 1 môn Toán 11 là kỳ thi rất quan trọng đối với các em học sinh lớp 11, điểm số của kỳ thi này tác động lớn đến điểm trung bình môn Toán 11 nói riêng và xếp loại học lực nói chung. Để giúp các em đạt được điểm số cao trong kì thi HK1 Toán 11 sắp tới, chọn lọc và chia sẻ đến các em bản PDF đề thi + đáp án/đáp số + lời giải chi tiết đề thi học kì 1 Toán 11 năm học 2019 – 2020 trường THPT Bùi Thị Xuân, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 1 Toán 11 năm 2019 – 2020 trường THPT Bùi Thị Xuân – TP HCM : + Gọi X là tập hợp các số tự nhiên gồm 3 chữ số khác nhau được lập nên từ các chữ số 1; 2; 4; 6; 8; 9. Lấy ngẫu nhiên 1 phần tử của X. Tính xác suất để chọn được số chia hết cho 2. + Một đa giác có độ dài các cạnh lập thành một cấp số cộng có công sai bằng 4(cm), cạnh nhỏ nhất bằng 6(cm) và chu vi của đa giác bằng 126(cm). Tính độ dài cạnh lớn nhất của đa giác. + Dùng phương pháp quy nạp, hãy chứng minh: un = 10^n – 2n^3 – n + 2 luôn chia hết cho 3 với mọi số nguyên dương n.
Đề thi HK1 Toán 11 năm 2019 - 2020 trường THPT Phú Lâm - TP HCM
Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 11, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 11 năm học 2019 – 2020 trường THPT Phú Lâm, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 11 năm 2019 – 2020 trường THPT Phú Lâm – TP HCM : + Một bình đựng 10 viên bi chỉ khác nhau về màu, gồm 4 bi màu đỏ và 6 bi màu vàng. Lấy ngẫu nhiên 3 viên bi .Tính xác suất để: a. Lấy được 1 bi đỏ và 2 bi vàng. b. Trong ba viên bi lấy được có ít nhất 1 bi màu vàng. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, H là giao điểm của AC và BD. Gọi M là trung điểm của cạnh SA, N là trung điểm của cạnh SB. a. Xác định giao tuyến của hai mặt phẳng (SAC) và (SBD). b. Chứng minh MN song song với mặt phẳng (SCD). + Cho cấp số nhân (un) có công bội q = 1/4, số hạng đầu u1 = 2. Tìm số hạng thứ 2, thứ 10 của cấp số nhân đó?
Đề thi HK1 Toán 11 năm 2019 - 2020 trường THPT Nguyễn Thị Minh Khai - TP HCM
Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 11, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 11 năm học 2019 – 2020 trường THPT Nguyễn Thị Minh Khai, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 11 năm 2019 – 2020 trường THPT Nguyễn Thị Minh Khai – TP HCM : + Lớp 11A14 có 30 học sinh được chia làm 4 tổ: tổ 1 có 6 học sinh, tổ 2 có 7 học sinh, tổ 3 có 8 học sinh, tổ 4 có 9 học sinh. Giáo viên dạy môn Toán của lớp cần chọn ra 10 học sinh để tham dự ngoại khóa.Hỏi có bao nhiêu cách chọn để mỗi tổ có ít nhất 1 học sinh tham dự. + Từ các chữ số của tập hợp M = {1, 2, 3, 4, 5, 6, 7}, người ta tạo ra các số nguyên dương gồm 2 chữ số phân biệt. Tính xác suất để số tạo thành là số lẻ. + Dùng phương pháp qui nạp toán học, chứng minh rằng với mọi số nguyên dương n, ta có: 1.4 + 2.7 + … + n(3n + 1) = n(n + 1)^2.