Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Quỳnh Phụ Thái Bình

Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Quỳnh Phụ Thái Bình Bản PDF - Nội dung bài viết Đề học sinh giỏi lớp 8 môn Toán năm 2021-2022 phòng GD ĐT Quỳnh Phụ Thái Bình Đề học sinh giỏi lớp 8 môn Toán năm 2021-2022 phòng GD ĐT Quỳnh Phụ Thái Bình Chúng ta sẽ cùng khám phá những bài toán thú vị trong đề học sinh giỏi môn Toán lớp 8 năm học 2021-2022 của phòng Giáo dục và Đào tạo huyện Quỳnh Phụ, tỉnh Thái Bình. 1. Cho hai đa thức f(x) = (x + 1)(x + 2)(x + 3)(x + 4)(x + 5) + 2014 và g(x) = x^2 + 7x + 8. Hãy tìm đa thức dư khi chia đa thức f(x) cho đa thức g(x). 2. Xét hai đa thức: f(x) = x^3 - x - 6 và g(x) = x^2 + ax + b. Tìm giá trị của a và b sao cho f(x) chia hết cho g(x). Sau đó, xác định đa thức thương. 3. Trong tam giác ABC đều cố định, M là trung điểm của BC. Điểm E di chuyển trên cạnh AB và điểm F di chuyển trên cạnh AC sao cho góc EMF bằng 60 độ. Hãy xác định vị trí của điểm E trên cạnh AB sao cho tổng đoạn thẳng AE + AF là lớn nhất. Cùng nhau tham gia vào cuộc thi học sinh giỏi và thách đố bản thân với những bài toán thú vị, thú vị từ đề thi này nhé!

Nguồn: sytu.vn

Đọc Sách

Đề thi Olympic Toán 8 năm 2021 - 2022 phòng GDĐT Nghĩa Đàn - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olympic môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Nghĩa Đàn, tỉnh Nghệ An. Trích dẫn đề thi Olympic Toán 8 năm 2021 – 2022 phòng GD&ĐT Nghĩa Đàn – Nghệ An : + Cho n là số tự nhiên có hai chữ số. Tìm n biết n + 2 và 2n đều là các số chính phương. + Cho hình vuông ABCD. Qua C kẻ đường thẳng d cắt tia AD, tia AB lần lượt tại E, F (AE < AF). Gọi M là giao điểm của DF và BC; N là giao điểm của BE và DC. a) Chứng minh: MC АВ b) Chứng minh MN // EF c) Kẻ AI vuông góc với EF (I EF). Gọi K là giao điểm BE và DF. Chứng minh A, K, I thẳng hàng. + Giả sử mỗi điểm trong mặt phẳng được tô bởi một trong hai màu xanh và đỏ. Chứng minh tồn tại một hình chữ nhật có các đỉnh được tô cùng màu.
Đề thi học sinh giỏi Toán 8 năm 2021 - 2022 trường THCS Trần Mai Ninh - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 năm học 2021 – 2022 trường THCS Trần Mai Ninh, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 24 tháng 02 năm 2022. Trích dẫn đề thi học sinh giỏi Toán 8 năm 2021 – 2022 trường THCS Trần Mai Ninh – Thanh Hóa : + Cho tam giác ABC nhọn (AB < AC). Các đường cao AE, BF cắt nhau tại H. Gọi M trung điểm của BC, qua H vẽ đường thẳng a vuông góc với HM, a cắt AB, AC lần lượt tại I và K. a) Chứng minh ABC đồng dạng EFC. b) Qua C kẻ đường thẳng b song song với đường thẳng IK, b cắt AH, AB theo thứ tự tại N và D. Chứng minh NC = ND và HI = HK. + Cho tam giác PQR cân tại P. Trên cạnh PQ vẽ T sao cho QT = 2PT. Vẽ QG vuông góc với RT. Gọi M là trung điểm của PG. Tỉnh góc PMQ. + Cho ba số dương a b c với abc = 1. Tìm giá trị lớn nhất của biểu thức M?
Đề thi HSG Toán 8 năm 2020 - 2021 phòng GDĐT Thanh Thủy - Phú Thọ
Đề thi HSG Toán 8 năm 2020 – 2021 phòng GD&ĐT Thanh Thủy – Phú Thọ được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 16 câu, chiếm 08 điểm, phần tự luận gồm 04 câu, chiếm 12 điểm, thời gian làm bài 150 phút, đề thi có đáp án trắc nghiệm và lời giải chi tiết tự luận. Trích dẫn đề thi HSG Toán 8 năm 2020 – 2021 phòng GD&ĐT Thanh Thủy – Phú Thọ : + Một ngày trong năm được gọi là ngày nguyên tố nếu như số chỉ ngày và số chỉ tháng của ngày đó đều là số nguyên tố. Ví dụ, ngày 29/3 được xem là một ngày nguyên tố vì 29 và 3 đều là số nguyên tố, còn 28/3 không là ngày nguyên tố vì 28 là hợp số. Hỏi trong năm 2019 có tổng cộng bao nhiêu ngày nguyên tố? + Một quả bóng đá được khâu từ 32 miếng da. Mỗi miếng ngũ giác màu đen khâu với 5 miếng màu trắng, và mỗi miếng lục giác màu trắng khâu với 3 miếng màu đen, như hình vẽ. Số miếng màu trắng là? + Cho tam giác ABC. Đường thẳng xy đi qua A và cắt cạnh BC tại M. Gọi H, K là chân đường vuông góc kẻ từ B và C xuống xy. Hãy xác định vị trí của đường thẳng xy để tổng BH + CK đạt giá trị lớn nhất.
Đề thi HSG Olympic Toán 8 năm 2020 - 2021 phòng GDĐT Quỳnh Lưu - Nghệ An
Đề thi HSG Olympic Toán 8 năm 2020 – 2021 phòng GD&ĐT Quỳnh Lưu – Nghệ An gồm 01 trang với 04 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề thi HSG Olympic Toán 8 năm 2020 – 2021 phòng GD&ĐT Quỳnh Lưu – Nghệ An : + Tìm cặp số nguyên x, y thỏa mãn. + Hai bạn Lan và Hoa vào cửa hàng sách, Lan mua một số quyển vở, Hoa không những mua gấp đôi số quyển vở của Lan mua mà còn nhiều hơn một quyển nữa. Tính số quyển vở mỗi bạn mua. Biết rằng số quyển vở Lan mua là một số nguyên tố, số quyển vở Hoa mua là lập phương của một số tự nhiên. + Một tam giác có độ dài ba cạnh là a, b, c và chu vi là 2. Chứng minh rằng: a2 + b2 + c2 + 2abc < 2.