Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát HSG Toán 11 năm 2023 - 2024 trường THPT Lê Quý Đôn - Thái Bình

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề khảo sát học sinh giỏi môn Toán 11 năm học 2023 – 2024 trường THPT Lê Quý Đôn, tỉnh Thái Bình. Đề thi được biên soạn theo định dạng trắc nghiệm mới nhất, với cấu trúc gồm 03 phần: Học sinh chọn 1 trong 4 phương án A B C D; Học sinh chỉ chọn ĐÚNG hoặc SAI; Tự luận. Đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát HSG Toán 11 năm 2023 – 2024 trường THPT Lê Quý Đôn – Thái Bình : + Cho hình chóp S.ABCD có đáy ABCD là hình thang với AB CD AB CD 6a 3 tam giác SAB là tam giác đều. Gọi M là trung điểm của cạnh AD. Đúng Sai 1. Giao tuyến của mặt phẳng (SAB) và mặt phẳng (SCD) là đường thẳng đi qua S và song song với AB. 2. Giao điểm của đường thẳng AD và mặt phẳng (SBC) nằm trong mặt phẳng (SCD). 3. CD // SB. 4. Mặt phẳng α đi qua M song song với mặt phẳng (SAB) cắt các mặt của hình chóp (nếu có) theo các đoạn giao tuyến tạo thành một đa giác có diện tích bằng 2 5 3. + Ba bạn An, Bình, Chiến mỗi người chọn ngẫu nhiên một số tự nhiên thuộc đoạn [1;2023]. Tính xác xuất để ba số được chọn có tổng chia hết cho 3. Làm tròn kết quả đến chữ số thập phân thứ 2. + Trong mặt phẳng Oxy cho tam giác ABC có A(1;3), B(2;1), C(5;4). Đường thẳng ∆ đi qua đỉnh A và cắt cạnh BC tại D sao cho diện tích tam giác ADC bằng 2 lần diện tích tam giác ADB. Tính tổng khoảng cách từ B và C đến đường thẳng ∆.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi tỉnh môn Toán 11 năm học 2016 - 2017 sở GD và ĐT Hà Tĩnh
Đề thi chọn học sinh giỏi tỉnh cấp THPT môn Toán lớp 11 năm học 2016 – 2017 sở GD và ĐT Hà Tĩnh gồm 5 bài toán tự luận. Nội dung đề gồm các phần: lượng giác, xác suất, giới hạn, hình học không gian, min – max và dãy số. Đề thi có lời giải chi tiết và thang điểm.
Đề thi chọn học sinh giỏi Toán 11 năm học 2016 - 2017 sở GD và ĐT Vĩnh Phúc
Đề thi chọn học sinh giỏi Toán 11 năm học 2016 – 2017 sở GD và ĐT Vĩnh Phúc gồm 5 bài toán tự luận. Đề thi có lời giải chi tiết và thang điểm. Trích một số bài toán trong đề: + Cho tam giác ABC cân tại A. Gọi D là trung điểm cạnh AC và M là trung điểm cạnh BC. Đoạn thẳng AM cắt đường tròn ngoại tiếp tam giác BCD tại điểm E. Đường thẳng BD cắt đường tròn ngoại tiếp tam giác ABE tại điểm F khác B. Đường thẳng AF cắt đường thẳng BE tại I, đường thẳng CI cắt đường thẳng BD tại K. a. Chứng minh rằng DA = DF b. Chứng minh rằng I là tâm đường tròn nội tiếp tam giác ABK + Cho S là một số nguyên dương sao cho S chia hết cho tất cả các số nguyên dương từ 1 đến 2017. Xét k số nguyên dương a1, a2, … ak (không nhất thiết phân biệt) thuộc tập hợp {1, 2, … 2017} thỏa mãn a1 + a2 + … + ak >= 2S. Chứng minh rằng ta có thể chọn ra từ các số a1, a2, … ak một vài số sao cho tổng của chúng bằng S.
Đề thi KSCL học sinh giỏi Toán 11 năm học 2016 - 2017 cụm thi THPT Yên Thành - Nghệ An
Đề thi KSCL học sinh giỏi Toán 11 năm học 2016 – 2017 cụm thi THPT Yên Thành – Nghệ An gồm 6 câu hỏi tự luận, có lời giải chi tiết.
Đề thi học sinh giỏi Toán 11 cấp tỉnh năm 2016 - 2017 sở GDĐT Lai Châu
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi môn Toán 11 cấp tỉnh năm học 2016 – 2017 sở Giáo dục và Đào tạo UBND tỉnh Lai Châu; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán 11 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Lai Châu : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAD là một tam giác cân tại S và nằm trong mặt phẳng vuông góc với đáy. Gọi M, N, P lần lượt là trung điểm của các cạnh SB, BC và CD. Biết góc giữa đường thẳng SB và mặt phẳng (ABCD) bằng 0 30. a) Chứng minh rằng BP AMN. b) Tính khoảng cách giữa hai đường thẳng AB và SC. + Giải phương trình sau: sin 2 2cos2 1 sin 4cos x x xx. + Cho số nguyên dương n thỏa mãn điều kiện: 32 1 2 n n C C CC n n nn. Tìm hệ số của số hạng chứa 11 x trong khai triển 3 8 3 n n n x x với x ≠ 0.