Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Một số bài toán liên quan đến tỷ số thể tích khối đa diện

Tài liệu gồm 45 trang, được biên soạn bởi thầy giáo Lê Bá Bảo, hướng dẫn phương pháp giải một số bài toán liên quan đến tỷ số thể tích khối đa diện trong chương trình môn Toán 12 phần Hình học. MỘT SỐ BÀI TOÁN LIÊN QUAN ĐẾN TỶ SỐ THỂ TÍCH. Dạng 1 : Tỷ số liên quan đến diện tích đáy và đường cao. + Mức 1: Cho hình chóp S.ABC có thể tích là V. Gọi M là trung điểm BC. Thể tích khối chóp S.ABM bằng? + Mức 2: Cho hình chóp S.ABC có thể tích là V. Gọi M, N là trung điểm AB, AC. Thể tích khối chóp S.AMN bằng? + Mức 3: Cho hình chóp S.ABC có thể tích là V. Gọi M, N, P là trung điểm SA, AB, AC. Thể tích khối chóp M.ANP bằng? + Mức 4: Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi V là thể tích khối chóp S.ABCD. Thể tích khối chóp S.ABO bằng? + Mức 5: Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi V là thể tích khối chóp S.ABCD. M là trung điểm SA. Thể tích khối chóp M.ABO bằng? Dạng 2 : Tỷ số thể tích khối chóp tam giác. + Mức 1: Cho hình chóp S.ABC có thể tích là V. Gọi M, N, P lần lượt là trung điểm SA, SB, SC. Thể tích khối chóp S.MNP bằng? + Mức 2: Cho hình chóp S.ABC có thể tích là V. Gọi M, N, P lần lượt là trung điểm SA, SB, SC. Thể tích khối đa diện MNPCBA bằng? + Mức 3: Cho hình chóp S.ABC có thể tích là V. Gọi M, N lần lượt là trung điểm SB, SC. Thể tích khối chóp S.AMN bằng? + Mức 4: Cho hình chóp S.ABC có thể tích là V. Gọi M, N lần lượt là trung điểm SB, SC. Thể tích khối chóp A.MNCB bằng? Dạng 3 : Tỷ số thể tích khối chóp tứ giác. + Mức 1: Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi V là thể tích khối chóp S.ABCD. Gọi M, N, P, Q lần lượt là trung điểm SA, SB, SC, SD. Thể tích khối chóp S.MNPQ bằng? + Mức 2: Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi V là thể tích khối chóp S.ABCD. Gọi M, N lần lượt là trung điểm SA, SB. Thể tích khối chóp S.MNCD bằng? Dạng 4 : Tỷ số thể tích khối lăng trụ. + Mức 1: Cho hình lăng trụ ABC.A’B’C’ có thể tích là V. Thể tích khối chóp A’.ABC bằng? + Mức 2: Cho hình lăng trụ ABC.A’B’C’ có thể tích là V. Thể tích khối chóp A’.B’C’CB bằng? + Mức 3: Cho hình lăng trụ ABC.A’B’C’ có thể tích là V. Gọi M, N lần lượt là trung điểm BB’, CC’. Thể tích khối chóp A’.B’C’NM bằng? + Mức 4: Cho hình lăng trụ ABC.A’B’C’ có thể tích là V. Gọi M, N, P lần lượt là trung điểm AA’, BB’, CC’. Thể tích khối A’B’C’. MNP bằng? + Mức 5: Cho hình lăng trụ ABC.A’B’C’ có thể tích là V. Gọi M là trung điểm BB’. Thể tích khối chóp M.A’B’C’ bằng? + Mức 6: Cho hình hộp ABCD.A’B’C’D’ có thể tích là V. Thể tích khối chóp A’.ABC bằng? + Mức 7: Cho hình hộp ABCD.A’B’C’D’ có thể tích là V. Thể tích khối tứ diện BDA’C’ bằng? + Mức 8: Cho hình hộp ABCD.A’B’C’D’ có thể tích là V. Gọi M, N, P, Q lần lượt là trung điểm AA’, BB’, CC’, DD’. Thể tích khối đa diện A’B’C’D’.QMNP bằng? + Mức 9: Cho hình hộp ABCD.A’B’C’D’ có thể tích là V. Gọi M, N lần lượt là trung điểm AA’, BB’. Thể tích khối đa diện A’B’NMDCC’D’ bằng? Dạng 5 : Một số bài toán khác. + Mức 1: Cho tam giác ABC đều có cạnh bằng a. Dựng AA’, BB’, CC, vuông góc với (ABC) sao cho AA’ = 3a, BM = CN = a. Thể tích khối đa diện A’ABCNM bằng? + Mức 2: Cho tam giác ABC đều có cạnh bằng a. Dựng AA’, BB’, CC’ vuông góc với (ABC) sao cho AA’ = 4a, BM = 2a, CN = 4a/3. Thể tích khối đa diện A’ABCNM bằng? BÀI TẬP RÈN LUYỆN. LỜI GIẢI CHI TIẾT.

Nguồn: toanmath.com

Đọc Sách

Nắm trọn chuyên đề thể tích khối đa diện ôn thi THPT Quốc gia môn Toán
Tài liệu gồm 464 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tổng hợp các dạng bài tập thường gặp về chuyên đề thể tích khối đa diện, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 ôn tập hướng đến kỳ thi tốt nghiệp THPT Quốc gia môn Toán năm học 2023 – 2024. Dạng 1: Mở đầu về thể tích khối đa diện. Dạng 2: Thể tích khối chóp có cạnh bên vuông góc với đáy. Dạng 3: Thể tích khối chóp có mặt bên vuông góc với đáy. Dạng 4: Thể tích khối chóp đều. Dạng 5: Tổng hợp về thể tích khối chóp. Dạng 6: Tỷ số thể tích khối chóp. Dạng 7: Thể tích khối lăng trụ đứng. Dạng 8: Thể tích khối đa diện đều. Dạng 9: Thể tích khối lăng trụ xiên. Dạng 10: Tỷ số thể tích khối lăng trụ. Dạng 11: Góc, khoảng cách liên quan đến thể tích khối đa diện. Dạng 12: Cực trị khối đa diện.
Chuyên đề trắc nghiệm tỉ số thể tích
Tài liệu gồm 56 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề tỉ số thể tích, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 1. I. LÝ THUYẾT TRỌNG TÂM 1. Kỹ thuật đổi đỉnh (đáy không đổi). 2. Kỹ thuật chuyển đáy (đường cao không đổi). 3. Tỉ số thể tích của khối chóp. 4. Tỉ số thể tích của khối lăng trụ. II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI + Dạng 1. Tỉ số thể tích của khối chóp. + Dạng 2: Tỉ số thể tích khối lăng trụ. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm thể tích khối lăng trụ
Tài liệu gồm 30 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề thể tích khối lăng trụ, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 1. I. LÝ THUYẾT TRỌNG TÂM II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI + Dạng 1: Thể tích khối lăng trụ đứng. + Dạng 2: Thể tích khối lăng trụ xiên. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm thể tích khối chóp
Tài liệu gồm 48 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề thể tích khối chóp, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 1. I. LÝ THUYẾT TRỌNG TÂM II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI Dạng 1: Thể tích khối chóp có đường cao sẵn có. Dạng 2: Thể tích khối chóp có mặt bên vuông góc với đáy. Dạng 3: Thể tích khối chóp đều. + Khối chóp tam giác đều. + Khối chóp tứ giác đều. Dạng 4: Thể tích một số khối chóp đặc biệt. + Khối chóp có các cạnh bên bằng nhau. + Khối chóp có các cạnh bên tạo với đáy các góc bằng nhau. + Khối chóp có các mặt bên đều tạo với đáy các góc bằng nhau. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.