Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra Toán 12 năm 2018 - 2019 trường THCS và THPT Nguyễn Khuyến - Bình Dương lần 4

Đề kiểm tra Toán 12 năm 2018 – 2019 trường THCS và THPT Nguyễn Khuyến – Bình Dương lần 4 được chia sẻ bởi giáo viên nhà trường gồm 6 trang với 50 câu hỏi trắc nghiệm khách quan, đề nhằm kiểm tra kiến thức Toán 12 định kỳ giúp học sinh rèn luyện từng bước để chuẩn bị cho kỳ thi THPT Quốc gia 2019 môn Toán, đề thi có đáp án. Trích dẫn đề kiểm tra Toán 12 năm 2018 – 2019 trường THCS và THPT Nguyễn Khuyến – Bình Dương lần 4 : + Có một cái bể hình trụ cao 10 dm với bán kính đáy 4 dm chứa đầy nước bị một thùng gỗ hình lập phương đóng kín rơi vào làm cho một lượng nước V tràn ra. Biết rằng cạnh thùng gỗ là 8 dm và khi nó rơi vào miệng bể, một đường chéo dài nhất của nó vuông góc với mặt bể, ba cạnh của thùng chạm vào thành của bể như hình vẽ. Tính V. [ads] + Cho phương trình: 3^x = m + 1. Chọn phát biểu đúng. A. Phương trình luôn có nghiệm với mọi m. B. Phương trình có nghiệm với m ≥ −1. C. Phương trình có nghiệm dương nếu m > 0. D. Phương trình luôn có nghiệm duy nhất x = log_3 (m + 1). + Cho hai hàm số y = f(x) = log_a x và y = g(x) = a^x. Xét các mệnh đề sau: I. Đồ thị của hai hàm số f(x) và g(x) luôn cắt nhau tại một điểm. II. Hàm số f(x) + g(x) đồng biến khi a > 1, nghịch biến khi 0 < a < 1. II. Đồ thị hàm số f(x) nhận trục Oy làm tiệm cận. Số mệnh đề đúng là?

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra KSCL Toán 12 đầu năm 2022 - 2023 trường THPT Hàm Long - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra khảo sát chất lượng môn Toán 12 đầu năm học 2022 – 2023 trường THPT Hàm Long, tỉnh Bắc Ninh; đề thi gồm 06 trang với 50 câu hỏi và bài toán theo hình thức trắc nghiệm, thời gian học sinh làm bài thi là 90 phút (không kể thời gian phát đề), đề thi có đáp án mã đề 101 102 103 104 105 106. Trích dẫn Đề kiểm tra KSCL Toán 12 đầu năm 2022 – 2023 trường THPT Hàm Long – Bắc Ninh : + Trong các mệnh đề dưới đây, mệnh đề nào sai? A. Hình chóp tứ giác đều có hình chiếu vuông góc của đỉnh lên đáy trùng với tâm của đáy. B. Hình chóp tứ giác đều có tất cả các cạnh bằng nhau. C. Hình chóp tứ giác đều có đáy là hình vuông. D. Hình chóp tứ giác đều có các cạnh bên bằng nhau. + Cho hình chóp S.ABC có SA ⊥ (ABC), đáy ABC vuông tại A. Mệnh đề nào sau đây sai: A. góc giữa (SBC) và (SAC) là góc SCB B. (SAB) ⊥ (ABC) C. (SAB) ⊥ (SAC) D. Vẽ AH ⊥BC,H thuộc BC. Góc giữa (SBC) và (ABC) là góc AHS. + Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N lần lượt là trung điểm của AD và BC. Giao tuyến của (SMN) và (SAC) là: A. SO (O là tâm của ABCD) B. SD C. SG (G là trung điểm AB) D. SF (F là trung điểm CD).
Đề kiểm tra chất lượng Toán 12 đầu năm 2022 - 2023 THPT Hàn Thuyên - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra chất lượng môn Toán 12 đầu năm học 2022 – 2023 trường THPT Hàn Thuyên, tỉnh Bắc Ninh; đề thi mã đề 132 gồm 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, nội dung đề nằm trong chương trình Toán 10 và Toán 11; đề thi có đáp án mã đề 132 209 357 485 570 628 743 896. Trích dẫn đề kiểm tra chất lượng Toán 12 đầu năm 2022 – 2023 THPT Hàn Thuyên – Bắc Ninh : + Tại vòng chung kết của một trò chơi trên truyền hình, có 100 khán giả tại trường quay có quyền bình chọn cho hai thí sinh A và B. Biết rằng có 85 khán giả bình chọn cho thí sinh A, 72 khán giả bình chọn cho thí sinh B và 60 khán giả bình chọn cho cả hai thí sinh này. Có bao nhiêu khán giả tham gia bình chọn? + Trong dịp hội trại hè 2022, bạn An thả một quả bóng cao su từ độ cao 6 m so với mặt đất, mỗi lần chạm đất quả bóng lại nảy lên một độ cao bằng ba phần tư độ cao lần rơi trước. Biết rằng quả bóng luôn chuyển động vuông góc với mặt đất. Tổng quãng đường quả bóng đã bay (từ lúc thả bóng cho đến lúc bóng không nảy nữa) khoảng? + Trong mặt phẳng với hệ toạ độ Oxy cho tam giác ABC có phương trình đường thẳng chứa cạnh BC là x y 2 4 0. Gọi D E 2 2 1 4 lần lượt là hình chiếu vuông góc của B lên AC AI với I là tâm đường tròn ngoại tiếp tam giác ABC. Giả sử toạ độ điểm B là B a b tính 2 3 a b biết đỉnh B có hoành độ âm.
Đề khảo sát Toán 12 lần 4 năm 2022 trường chuyên Hùng Vương - Phú Thọ
Nhằm hướng đến kỳ thi tốt nghiệp THPT 2022 môn Toán, giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán 12 lần 4 năm học 2021 – 2022 trường THPT chuyên Hùng Vương, thành phố Việt Trì, tỉnh Phú Thọ; đề thi có đáp án mã đề 122; kỳ thi được diễn ra vào tháng 06 năm 2022. Trích dẫn đề khảo sát Toán 12 lần 4 năm 2022 trường chuyên Hùng Vương – Phú Thọ : + Tính hết năm 2021, diện tích rừng của tỉnh Phú Thọ là 140600 ha, tỷ lệ che phủ rừng trên địa bàn tỉnh đạt 39,8%. Trong năm 2021 tỉnh Phú Thọ trồng mới được 1000 ha.Giả sử diện tích rừng trồng mới của tỉnh mỗi năm tiếp theo đều tăng 6% so với diện tích rừng trồng mới của năm liền trước. Năm nào dưới đây là năm đầu tiên tỉnh có diện tích rừng đạt tỷ lệ che phủ 45%? + Cho hàm số 4 2 f x x bx c b c có đồ thị là đường cong C và đường thẳng d y g x tiếp xúc với C tại điểm 0 x 1. Biết d và C còn có hai điểm chung khác có hoành độ là x x x x 1 2 1 2 và 2 1 2 4 d 1 3 x x g x f x x x. Tính diện tích hình phẳng giới hạn bởi đường cong C và đường thẳng d. + Cho hình nón đỉnh S, đáy là hình tròn tâm O, góc ở đỉnh của hình nón là 120. Cắt hình nón bởi mặt phẳng đi qua đỉnh S được thiết diện là tam giác vuông SAB, trong đó A B thuộc đường tròn đáy. Biết rằng khoảng cách giữa SO và AB bằng 3. Diện tích xung quanh của hình nón bằng?
Đề khảo sát chất lượng Toán 12 đợt 2 cuối năm 2021 - 2022 sở GDĐT Nam Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán 12 THPT đợt 2 cuối năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Nam Định, nhằm giúp các em rèn luyện để chuẩn bị cho kì thi tốt nghiệp Trung học Phổ thông môn Toán năm 2022; kỳ thi được diễn ra vào thứ Bảy ngày 18 tháng 06 năm 2022; đề thi có đáp án mã đề Mã đề 911 Mã đề 913 Mã đề 915 Mã đề 917. Trích dẫn đề khảo sát chất lượng Toán 12 đợt 2 cuối năm 2021 – 2022 sở GD&ĐT Nam Định : + Cho hình chóp S.ABCD có đáy là hình thang ABCD vuông tại A và D; AB = 2AD = 2CD; SA vuông góc với đáy; góc giữa SC và đáy bằng 60°. Biết khoảng cách từ B đến (SCD) bằng a42/7, tính thể tích của khối chóp S.ACD. + Trong không gian Oxyz, cho đường thẳng d, mặt phẳng (P): x + y – 2z + 5 = 0 và điểm A(1;-1;2). Đường thẳng A đi qua A cắt đường thẳng d và mặt phẳng (P) lần lượt tại M, N sao cho AM = 2AN, biết rằng A có một vectơ chỉ phương u = (a;b;-1). Khi đó a – b bằng? + Trong không gian Oxyz, cho mặt cầu (S): x2 + (y – 1)2 + (z + 5)2 = 36 và bốn điểm A(1;2;0), B(3;-1;2), C(1;2;2), D(3;-1;1). Gọi M(a;b;c) là điểm nằm trên mặt cầu (S) sao cho biểu thức T = MA2 + 2MB2 – MC2 – 4MD đạt giá trị nhỏ nhất. Tính a + b + c.