Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 – 2023 sở GD ĐT Bắc Giang

Nội dung Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 – 2023 sở GD ĐT Bắc Giang Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 cấp tỉnh Bắc Giang Đề thi học sinh giỏi Toán lớp 9 cấp tỉnh Bắc Giang Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi Toán cấp tỉnh của năm học 2022 - 2023 do Sở Giáo dục và Đào tạo tỉnh Bắc Giang tổ chức. Đề thi gồm hai phần chính: trắc nghiệm (chiếm 30% tổng điểm) và tự luận (chiếm 70% tổng điểm). Thí sinh có 120 phút để hoàn thành bài thi, không tính thời gian giao đề. Kỳ thi sẽ diễn ra vào ngày 04 tháng 03 năm 2023. Trích dẫn một số câu hỏi trong đề: 1. Cho đường tròn tâm O bán kính R có dây cung AB = 6. Biết góc AOB = 120°. Tính diện tích phần hình tròn giới hạn bởi cung nhỏ AB và dây cung AB. 2. Cho hai đường tròn (O; R) và (O’; R’) cắt nhau tại A và B. Đường thẳng d qua A cắt hai đường tròn tại M, N và A thuộc đoạn MN. Chứng minh tứ giác MBNK là tứ giác nội tiếp. 3. Trong mặt phẳng tọa độ Oxy, gọi M(x, y) là hình chiếu vuông góc của điểm O lên đường thẳng d: y = mx + 2. Khi độ dài đoạn thẳng OM đạt giá trị lớn nhất, tính P = x^2y.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát HSG Toán 9 lần 1 năm 2023 - 2024 phòng GDĐT Tam Kỳ - Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát học sinh giỏi môn Toán 9 lần 1 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Tam Kỳ, tỉnh Quảng Nam; kỳ thi được diễn ra vào ngày 28 tháng 09 năm 2023.
Đề khảo sát Toán 9 vòng 1 năm 2023 - 2024 trường THCS Giảng Võ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát các môn văn hóa và khoa học lớp 9 môn Toán vòng 1 năm học 2023 – 2024 trường THCS Giảng Võ, quận Ba Đình, thành phố Hà Nội; kỳ thi được diễn ra vào Chủ Nhật ngày 01 tháng 10 năm 2023. Trích dẫn Đề khảo sát Toán 9 vòng 1 năm 2023 – 2024 trường THCS Giảng Võ – Hà Nội : + Cho n là số tự nhiên lớn hơn 1 thỏa mãn n2 + 4 và n2 + 11 đều là các số nguyên tố. Chứng minh rằng: n chia hết cho 5. + Cho tam giác ABC vuông tại A (AB < AC), H là chân đường vuông góc hạ từ A lên BC, M là trung điểm của AC, N là trung điểm của HC. Đường thẳng qua C song song với AB cắt MN tại P. 1) Chứng minh: Các tam giác ABM và CAP đồng dạng. 2) Gọi Q là chân đường vuông góc kẻ từ C lên AP. Chứng minh: HQN = 90°. 3) Đường thẳng HQ cắt MP tại I, gọi K là trung điểm của đoạn thẳng NI, G là trung điểm của đoạn thẳng HQ. Chứng minh: B, G, K thẳng hàng. + Các số nguyên dương 1; 2; …; 100 được chia thành 25 tập hợp (tập hợp nào cũng có ít nhất 1 phần tử). Chứng minh rằng tồn tại ba số nguyên dương thuộc cùng một trong những tập hợp đó sao cho ba số đó là độ dài ba cạnh của một tam giác.
Đề chọn HSG Toán 9 vòng 2 năm 2023 - 2024 trường Nguyễn Tất Thành - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 vòng 2 năm học 2023 – 2024 trường THCS & THPT Nguyễn Tất Thành, Đại học Sư Phạm Hà Nội, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 25 tháng 09 năm 2023.
Đề HSG Toán 9 vòng 2 năm 2023 - 2024 phòng GDĐT thành phố Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 vòng 2 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Hải Dương, tỉnh Hải Dương; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề HSG Toán 9 vòng 2 năm 2023 – 2024 phòng GD&ĐT thành phố Hải Dương : + Cho đa thức A = 12×2 – 3y2 + 8xy + 2x + y biết rằng a, b là hai số nguyên dương thỏa mãn với x = a; y = b thì giá trị của đa thức A bằng 0. Chứng minh rằng: 6a + b + 1 là bình phương của một số nguyên. + Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB và AC. Gọi M là giao điểm của BF và CE a) Chứng minh AB.CF = AC.AE. b) So sánh diện tích tứ giác AEMF và diện tích tam giác BMC. + Cho tam giác ABC, điểm D trên cạnh BC sao cho DC = 4.BD. Điểm M thay đổi trên đoạn thẳng AD, BM cắt AC tại E, CM cắt AB tại F. Xác định vị trí điểm M trên AD để diện tích tam giác DEF lớn nhất.