Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử THPT Quốc gia 2020 môn Toán lần 1 cụm NBHL - Ninh Bình

Thứ Bảy ngày 11 tháng 01 năm 2020, cụm các trường THPT tại thành phố Ninh Bình và huyện Hoa Lư, tỉnh Ninh Bình tổ chức kỳ thi thử THPT Quốc gia môn Toán lần thứ nhất năm học 2019 – 2020. Đề thi thử THPT Quốc gia 2020 môn Toán lần 1 cụm NBHL – Ninh Bình mã đề 123 gồm có 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, kỳ thi nhằm giúp các em học sinh khối 12 tại các trường THPT trong cụm được thử sức và rèn luyện, chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm 2020, đề thi có đáp án. Trích dẫn đề thi thử THPT Quốc gia 2020 môn Toán lần 1 cụm NBHL – Ninh Bình : + Người ta bỏ ba quả bóng bàn cùng kích thước vào trong một chiếc hộp hình trụ có đáy bằng hình tròn lớn của quả bóng bàn và chiều cao bằng ba lần đường kính bóng bàn. Gọi S1 là tổng diện tích của ba quả bóng bàn, S2 là diện tích xung quanh của hình trụ. Tỉ số S1/S2 bằng? + Một hộp chứa 6 viên bi đỏ, 5 viên bi vàng và 4 viên bi xanh. Lấy ngẫu nhiên 4 viên bi. Tính xác suất để 4 viên bi được lấy ra có đủ ba màu và không có hai viên nào có số thứ tự trùng nhau. [ads] + Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy, đường thẳng SC tạo với đáy một góc bằng 60 độ. Thể tích của khối chóp S.ABC bằng? + Cho một tứ diện đều SABC có chiều cao h. Ở ba góc của tứ diện, người ta cắt đi các tứ diện đều bằng nhau có chiều cao x để khối đa diện còn lại có thể tích bằng một nửa thể tích khối tứ diện đều ban đầu. Tìm x. + Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Các điểm E, F lần lượt là trung điểm C’B’ và C’D’. Tính diện tích thiết diện của hình lập phương ABCD.A’B’C’D’ cắt bởi mặt phẳng (AEF).

Nguồn: toanmath.com

Đọc Sách

Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT Nguyễn Đức Mậu - Nghệ An lần 2
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT Nguyễn Đức Mậu – Nghệ An lần 2 gồm 50 câu hỏi trắc nghiệm. Trích một số bài toán trong đề: 1. Cho mặt phẳng (P) chứa hình vuông ABCD. Trên đường thẳng vuông góc với mặt phẳng (P) tại A, lấy điểm M. Trên đường thẳng vuông góc với mặt phẳng P tại C lấy điểm N (N cùng phía với M so với mặt phẳng (P). Gọi I là trung điểm của MN. Thể tích của tứ diện MNBD luôn có thể tích được bằng công thức nào sau đây? 2. Trong không gian Oxyz, cho hai điểm A(2;3;1), B(1;4;1). Phương trình tổng quát của mặt phẳng qua A B, và song song trục Oz là? 3. Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AD = a, AB = 2a, cạnh bên SA = 2a và vuông góc với mặt phẳng đáy (ABCD). Gọi M là trung điểm của cạnh BC. Tính bán kính hình cầu ngoại tiếp hình chóp S AMD.
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT EaRôk - Đăk Lăk
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT EaRôk – Đăk Lăk gồm 50 câu hỏi trắc nghiệm. Trích một số bài toán trong đề: 1. Diện tích hình tròn lớn của một hình cầu là a. Một mặt phẳng (P) cắt một hình cầu theo một đường tròn có bán kính r, diện tích a/2. Biết bán kính hình cầu là R, chọn đáp án đúng? 2. Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a,Hình chiếu vuông góc của A’ xuống (ABC) là trung điểm của AB. Mặt bên (ACC’A’) tạo với đáy góc 45 độ. Thể tích khối lăng trụ ABC.A’B’C’? 3. Người ta cần xây một hồ chứa nước với dạng khối hộp chữ nhật không nắp có thể tích bằng 500/3 m3. Đáy hồ là hình chữ nhật có chiều dài gấp đôi chiều rộng. Giá thuê nhân công để xây hồ là 500.000 đồng/m2. Khi đó, kích thước của hồ nước sao cho chi phí thuê nhân công thấp nhất là?
Đề thi giữa học kỳ 2 năm 2017 môn Toán trường THPT chuyên Lương Thế Vinh - Đồng Nai
Đề thi giữa học kỳ 2 năm 2017 môn Toán trường THPT chuyên Lương Thế Vinh – Đồng Nai gồm 50 câu hỏi trắc nghiệm, có đáp án.
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT Bắc Yên Thành - Nghệ An
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT Bắc Yên Thành – Nghệ An gồm 50 câu hỏi trắc nghiệm, có đáp án và lời giải chi tiết. Trích một số bài toán trong đề: 1. Ông A gửi số tiền 100 triệu đồng vào ngân hàng với lãi suất 7% trên năm, biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào vốn ban đầu. Hỏi sau thời gian 10 năm nếu không rút lãi lần nào thì số tiền mà ông A nhận được tính cả gốc lẫn lãi là? 2. Cho ba hình tam giác đều cạnh bằng a chồng lên nhau như hình vẽ (cạnh đáy của tam giác trên đi qua các trung điểm hai cạnh bên của tam gác dưới). Tính theo a thể tích của khối tròn xoay tạo thành khi quay chúng xung quanh đường thẳng (d)? 3. Cho một tấm nhôm hình chữ nhật ABCD có AD = 60cm, AB = 40cm. Ta gập tấm nhôm theo hai cạnh MN và PQ vào phía trong cho đến khi AB và DC trùng nhau như hình vẽ dưới đây để được một hình lăng trụ khuyết hai đáy. Khi đó có thể tạo được khối lăng trụ với thể tích lớn nhất bằng?