Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập đề thi học sinh giỏi Toán 9

Tài liệu gồm 182 trang, được biên soạn và sưu tầm bởi ThS Nguyễn Chín Em, tuyển tập 35 đề thi học sinh giỏi Toán 9 có lời giải chi tiết, giúp học sinh lớp 9 rèn luyện để chuẩn bị cho kỳ thi HSG Toán 9 cấp trường, cấp huyện / cấp quận, cấp tỉnh / cấp thành phố. Đề số 1. Đề thi HSG Lớp 9 – Quận Ba Đình – TP Hà Nội năm 2017 (Trang 4). Đề số 2. Đề thi HSG Lớp 9 – Quận Cầu Giấy – TP Hà Nội năm 2017 – 2018 Vòng 1 (Trang 9). Đề số 3. Đề thi HSG Lớp 9 – TP Hà Nội năm học 2010 – 2011 (Trang 14). Đề số 4. Đề thi HSG Lớp 9 – TP Hà Nội năm học 2011 – 2012 (Trang 19). Đề số 5. Đề thi HSG Lớp 9 – TP Hà Nội năm học 2012 – 2013 (Trang 24). Đề số 6. Đề thi HSG Lớp 9 – TP Hà Nội năm học 2013 – 2014 (Trang 30). Đề số 7. Đề thi HSG Lớp 9 – TP Hà Nội năm học 2014 – 2015 (Trang 35). Đề số 8. Đề thi HSG Lớp 9 – TP Hà Nội năm học 2016 – 2017 (Trang 41). Đề số 9. Đề thi HSG Lớp 9 – Quận Hoàn Kiếm – TP Hà Nội năm 2018 (Trang 47). Đề số 10. Đề thi Toán 9 HSG năm học 2011 Tp. Đà Nẵng (Trang 52). Đề số 11. Đề thi chọn học sinh giỏi Toán 9 năm học 2010 – 2011 Lâm Đồng (Trang 57). Đề số 12. Đề thi HSG lớp 9 Nghệ An Bảng A năm 2011 (Trang 62). Đề số 13. Đề thi chọn học sinh giỏi Toán 9 năm học 2010 – 2011 Quảng Bình (Trang 67). Đề số 14. Đề thi Toán 9 Học sinh giỏi năm học 2012 – 2013 An Giang (Trang 71). Đề số 15. HSG Toán 9 huyện Bình Giang tỉnh Hải Dương năm học 2012 – 2013 (Trang 77). Đề số 16. Đề thi Toán 9 Học sinh giỏi năm học 2012 – 2013 Tp. Đà Nẵng (Trang 81). Đề số 17. Đề thi HSG toán 9 tỉnh Hải Dương năm học 2012 – 2013 (Trang 85). Đề số 18. Đề thi chọn HSG Toán 9 năm học 2012 – 2013 Tỉnh Hà T˜ĩnh (Trang 90). Đề số 19. Đề thi Toán 9 Học sinh giỏi năm học 2012 – 2013 Kiên Giang (Trang 95). Đề số 20. Đề thi Toán 9 Học sinh giỏi năm học 2012 – 2013 tỉnh Quảng Ninh (Trang 99). Đề số 21. Đề thi chọn học sinh giỏi Toán 9 năm học 2012 – 2013 Tiền Giang (Trang 104). Đề số 22. Đề thi Toán 9 Học sinh gỏi năm học 2013 – 2014 Tỉnh Bắc Ninh (Trang 110). Đề số 23. Đề thi học sinh giỏi Toán 9 năm học 2013 – 2014 Nghi Xuân Hà Tĩnh (Trang 115). Đề số 24. Đề thi Toán 9 Học sinh gỏi năm học 2013 – 2014 Ninh Thuận (Trang 120). Đề số 25. Đề thi chọn học sinh giỏi Toán 9 năm học 2013 – 2014 V˜ĩnh Phúc (Trang 123). Đề số 26. Đề thi Toán 9 Học sinh gỏi năm học 2017 – 2018 An Giang (Trang 127). Đề số 27. Đề thi Toán 9 Học sinh gỏi năm học 2016 – 2017 Sở GD Bến Tre (Trang 132). Đề số 28. Đề thi Toán 9 Học sinh giỏi năm học 2016 – 2017 Hải Phòng (Trang 137). Đề số 29. Đề thi HSG Toán 9 Phú Lộc Thừa Thiên Huế 2017 (Trang 144). Đề số 30. Đề thi chọn học sinh giỏi Toán 9 năm học 2016 – 2017 Thanh Hóa (Trang 148). Đề số 31. Đề thi Toán 9 Học sinh giỏi năm học 2016 – 2017 Sở GD&ĐT Thừa Thiên Huế (Trang 153). Đề số 32. Đề thi chọn học sinh giỏi Toán 9 năm học 2016 – 2017 Thành phố Hồ Chí Minh (Trang 161). Đề số 33. Đề thi Toán 9 Học sinh giỏi năm học 2017 – 2018 Bình Định (Trang 166). Đề số 34. Đề thi chọn học sinh giỏi Toán 9 năm học 2017 – 2018 Hải Dương (Trang 171). Đề số 35. Đề thi chọn học sinh giỏi Toán 9 năm học 2017 – 2018 Huyện Tiền Hải – Tỉnh Thái Bình (Trang 178).

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT An Giang
Nội dung Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT An Giang Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán cấp tỉnh THCS An Giang năm 2022 - 2023 Đề thi học sinh giỏi Toán cấp tỉnh THCS An Giang năm 2022 - 2023 Xin chào quý thầy cô và các em học sinh lớp 9. Trong kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2022 - 2023 của sở Giáo dục và Đào tạo tỉnh An Giang, đã được lên lịch diễn ra vào thứ Bảy ngày 18 tháng 03 năm 2023. Nội dung đề thi bao gồm các câu hỏi sau: 1. Xác định tất cả các số nguyên có ba chữ số thỏa mãn tính chất: nếu bỏ chữ số đầu tiên ta được một số chính phương, nếu bỏ chữ số cuối cùng vẫn được một số chính phương. 2. Cho đường tròn (O) tâm O và đường kính AB. Kéo dài AB về phía B đến điểm S, kẻ cát tuyến SMC với đường tròn (O). Từ C vẽ dây CD vuông góc với AB; AM và BC cắt nhau tại N, AB và DM cắt nhau tại P. Yêu cầu: a) Chứng minh rằng NP song song với CD. b) Chứng tỏ rằng OP.OS = OA2. 3. Một quyển sách có 30 bài học, mỗi bài học bắt đầu ở một trang mới và có độ dài lần lượt là 1, 2, 3, ..., 30 trang (không theo thứ tự). Hỏi số lượng bài học lớn nhất bắt đầu từ trang đánh số lẻ của quyển sách là bao nhiêu? Hy vọng rằng đề thi sẽ giúp các em rèn luyện, củng cố kiến thức và kỹ năng Toán một cách hiệu quả. Chúc các em đạt kết quả cao trong kỳ thi sắp tới!
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Ninh Thuận
Nội dung Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Ninh Thuận Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán THCS Ninh Thuận 2022-2023 Đề thi học sinh giỏi Toán THCS Ninh Thuận 2022-2023 Chào đón quý thầy cô và các em học sinh lớp 9! Đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2022-2023 của Sở Giáo dục và Đào tạo tỉnh Ninh Thuận sắp diễn ra vào ngày 11 tháng 03 năm 2023. Đề thi sẽ đặt ra những câu hỏi thú vị và thách thức, như việc tìm số tự nhiên nhỏ nhất thỏa điều kiện đặc biệt, hoặc chứng minh một điều kiện toán học. Ví dụ, bạn có thể phải chứng minh rằng tổng bình phương của ba số a, b, c luôn lớn hơn tích của chúng, hoặc giải một bài toán về tam giác đều với điểm di chuyển trên cạnh. Đề thi cũng có thể yêu cầu bạn vẽ hình và suy luận logic để tìm ra đáp án chính xác. Hãy chuẩn bị kỹ lưỡng và thực hành nhiều để đối phó tốt với những thách thức toán học phía trước. Chúc quý thầy cô và các em học sinh thuận lợi và thành công trong kỳ thi sắp tới!
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Hà Giang
Nội dung Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Hà Giang Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán THCS cấp tỉnh Hà Giang năm 2022-2023 Đề thi học sinh giỏi Toán THCS cấp tỉnh Hà Giang năm 2022-2023 Xin chào quý thầy cô giáo và các em học sinh lớp 9! Hôm nay, chúng ta sẽ cùng nhau tìm hiểu về đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2022 – 2023 của sở Giáo dục và Đào tạo tỉnh Hà Giang. Đề thi bao gồm các bài toán thú vị và thách thức để kiểm tra kiến thức và kỹ năng của các em. Dưới đây là một số câu hỏi trong đề thi: 1. Cho Parabol (P): y = x2 và đường thẳng d: y = 2x - m. Hãy tìm giá trị của m sao cho đường thẳng d cắt parabol (P) tại hai điểm phân biệt với hoành độ x1, x2 thỏa mãn x12 + x22 = 5. 2. Cho x, y, z là ba số thực dương thỏa mãn: x + y + z = 23 và xy + yz + zx = 4. Hãy chứng minh rằng? 3. Trong tam giác ABC vuông tại A, với AB < AC và M là trung điểm của cạnh BC. Gọi P là một điểm bất kì trên đoạn AM. K, L lần lượt là các điểm nằm trên tia BP, CP sao cho AKB = ABC và ALC = ACB. Đường tròn (I) ngoại tiếp tam giác BPL cắt đường thẳng AB tại điểm F. Đường tròn (J) ngoại tiếp tam giác CPK cắt đường thẳng AC tại điểm E. Hãy chứng minh rằng: a) Tam giác BKA và BAP đồng dạng. b) Đường tròn IJ song song với đường FE. Hy vọng đề thi này sẽ giúp các em học sinh ôn tập và nâng cao kiến thức Toán của mình. Chúc quý thầy cô giáo và các em học sinh một kỳ thi thành công!
Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Bình Định
Nội dung Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Bình Định Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 cấp tỉnh 2022-2023 Bình Định Đề thi học sinh giỏi Toán lớp 9 cấp tỉnh 2022-2023 Bình Định Sytu xin gửi đến quý thầy, cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Bình Định. Kỳ thi sẽ diễn ra vào ngày thứ Bảy, 18 tháng 03 năm 2023. Đề bao gồm các bài toán sau: Trong tam giác nhọn ABC nội tiếp đường tròn (O) và một điểm P bất kì nằm trong tam giác, chứng minh HO là phân giác của góc IHD và KD vuông góc DM. Cho tam giác ABC có các đường phân giác trong AD, BE, CF cắt nhau tại I. Hãy chứng minh một số tính chất của tam giác. Có bao nhiêu tam giác có đỉnh là đỉnh của đa giác đều 2n đỉnh và có một góc lớn hơn 100 độ? Đây là những bài toán thú vị, đòi hỏi sự tư duy logic và khả năng giải quyết vấn đề của các em học sinh. Chúc các em thi tốt!