Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

10 đề kiểm tra cuối học kỳ 1 môn Toán 11 Kết Nối Tri Thức Với Cuộc Sống có đáp án

Tài liệu gồm 185 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tuyển tập 10 đề kiểm tra cuối học kỳ 1 môn Toán 11 bộ sách Kết Nối Tri Thức Với Cuộc Sống (viết tắt: KNTTVCS) có đáp án và lời giải chi tiết; các đề được biên soạn theo hình thức 70% trắc nghiệm khách quan kết hợp 30% tự luận (theo điểm số), trong đó phần trắc nghiệm gồm 35 câu, phần tự luận gồm 04 câu, thời gian làm bài 90 phút. Trích dẫn 10 đề kiểm tra cuối học kỳ 1 môn Toán 11 Kết Nối Tri Thức Với Cuộc Sống có đáp án: + Một đôi thỏ cứ mỗi tháng đẻ được một đôi thỏ con; mỗi đôi thỏ con, khi tròn hai tháng tuổi, lại mỗi tháng đẻ ra một đôi thỏ con và quá trình sinh nở cứ thế tiếp diễn. Hỏi sau một năm sẽ có tất cả bao nhiêu đôi thỏ, nếu đầu năm có một đôi thỏ sơ sinh? Giả sử thời gian trong năm này không có con thỏ nào chết. + Cho hình chóp S.ABCD có đáy là hình thang, AB // CD và AB CD 2. Gọi O là giao điểm của AC và BD. Lấy E thuộc cạnh SA, F thuộc cạnh SC sao cho 2 3 SE SF SA SC. Gọi là mặt phẳng qua O và song song với mặt phẳng (BEF). Gọi P là giao điểm của SD. Tính tỉ số SP SD. + Trong không gian, cho các mệnh đề: 1) Hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì song song với nhau. 2) Đường thẳng và mặt phẳng không có điểm chung thì chúng song song với nhau. 3) Nếu đường thẳng a song song với đường thẳng b, đường thẳng b nằm trên mặt phẳng P thì đường thẳng a song song với mặt phẳng P. 4) Hai mặt phẳng phân biệt có một điểm chung thì chúng có một đường thẳng chung duy nhất. Số mệnh đề đúng trong các mệnh đề trên là?

Nguồn: toanmath.com

Đọc Sách

Phiếu khảo bài môn Toán 11 học kì 1 - Lê Văn Đoàn
Tài liệu gồm 77 trang, được biên soạn bởi thầy giáo Lê Văn Đoàn, tuyển tập phiếu khảo bài môn Toán 11 học kì 1. ĐẠI SỐ & GIẢI TÍCH 11 Phiếu 1.1. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 1. Phiếu 1.2. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 3. Phiếu 2.1. Phương trình lượng giác cơ bản 5. Phiếu 2.2. Phương trình lượng giác cơ bản 7. Phiếu 3.1. Phương trình bậc hai theo một hàm số lượng giác 9. Phiếu 3.2. Phương trình bậc hai theo một hàm số lượng giác 11. Phiếu 4.1. Phương trình bậc nhất đối với sin và cosin (cổ điển) 13. Phiếu 4.2. Phương trình bậc nhất đối với sin và cosin (cổ điển) 15. Phiếu 5.1. Phương trình lượng giác đẳng cấp 17. Phiếu 5.2. Phương trình lượng giác đẳng cấp 19. Phiếu 6.1. Phương trình lượng giác đối xứng 21. Phiếu 6.2. Phương trình lượng giác đối xứng 23. Phiếu 7.1. Quy tắc đếm cơ bản 25. Phiếu 7.2. Quy tắc đếm cơ bản 27. Phiếu 8.1. Hoán vị, tổ hợp, chỉnh hợp 29. Phiếu 8.2. Hoán vị, tổ hợp, chỉnh hợp 31. Phiếu 8.3. Hoán vị, tổ hợp, chỉnh hợp 33. Phiếu 9.1. Nhị thức Newton 35. Phiếu 9.2. Nhị thức Newton 37. Phiếu 9.3. Nhị thức Newton 39. Phiếu 10.1. Xác suất 41. Phiếu 10.2. Xác suất 43. Phiếu 10.3. Xác suất 45. Phiếu 11.1. Cấp số cộng – Cấp số nhân 47. Phiếu 11.2. Cấp số cộng – Cấp số nhân 49. Phiếu 11.2. Cấp số cộng – Cấp số nhân 51. HÌNH HỌC 11 Phiếu 1.1. Tìm giao tuyến và giao điểm 53. Phiếu 1.2. Tìm giao tuyến và giao điểm 55. Phiếu 1.3. Tìm giao tuyến và giao điểm 57. Phiếu 2.1. Tìm thiết diện 59. Phiếu 2.2. Tìm thiết diện 60. Phiếu 3.1. Chứng minh ba điểm thẳng hàng 61. Phiếu 3.2. Chứng minh ba điểm thẳng hàng 62. Phiếu 4.1. Chứng minh hai đường thẳng song song 63. Phiếu 4.2. Chứng minh hai đường thẳng song song 64. Phiếu 5.1. Tìm giao tuyến song song 65. Phiếu 5.2. Tìm giao tuyến song song 67. Phiếu 6.1. Chứng minh đường thẳng song song với mặt phẳng 69. Phiếu 6.2. Chứng minh đường thẳng song song với mặt phẳng 71. Phiếu 7.1. Chứng minh mặt phẳng song song với mặt phẳng 73. Phiếu 7.2. Chứng minh mặt phẳng song song với mặt phẳng 75.