Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán hàm số bậc nhất

Nội dung Các dạng toán hàm số bậc nhất Bản PDF - Nội dung bài viết Các dạng toán hàm số bậc nhấtVấn đề 1: Nhắc lại và bổ sung các khái niệm về hàm số và đồ thị hàm sốVấn đề 2: Hàm số bậc nhấtVấn đề 3: Đồ thị của hàm số bậc nhấtVấn đề 4: Vị trí tương đối giữa hai đường thẳngVấn đề 5: Hệ số góc của đường thẳng y = ax + b (a ≠ 0) Các dạng toán hàm số bậc nhất Trong tài liệu này, bạn sẽ được hướng dẫn chi tiết với 28 trang về cách phân loại và giải các dạng toán hàm số bậc nhất. Đây là một tài liệu hữu ích cho học sinh lớp 9 khi học chương trình Toán lớp 9 phần Đại số chương 2. Vấn đề 1: Nhắc lại và bổ sung các khái niệm về hàm số và đồ thị hàm số Trước hết, tóm tắt lý thuyết để bạn hiểu rõ về khái niệm hàm số và đồ thị hàm số. Sau đó, bài tập và các dạng toán sẽ giúp bạn làm quen với các khái niệm này, bao gồm: Dạng 1: Tính giá trị của hàm số tại một điểm. Dạng 2: Biểu diễn tọa độ của một điểm trên mặt phẳng tọa độ. Dạng 3: Xét sự đồng biến và nghịch biến của hàm số. Dạng 4: Bài toán liên quan đến đồ thị hàm số y = ax (a ≠ 0). Sau khi làm xong bài tập, bạn cũng sẽ được giao bài tập về nhà để ôn tập kiến thức. Vấn đề 2: Hàm số bậc nhất Trong phần này, bạn sẽ được học về hàm số bậc nhất thông qua: Dạng 1: Nhận dạng hàm số bậc nhất. Dạng 2: Tìm m để hàm số đồng biến, nghịch biến. Sau khi học xong, bạn cũng sẽ có bài tập về nhà để luyện tập thêm. Vấn đề 3: Đồ thị của hàm số bậc nhất Ở phần này, bạn sẽ tìm hiểu về đồ thị của hàm số y = ax + b (a ≠ 0), bao gồm: Dạng 1: Vẽ đồ thị hàm số y = ax + b và tìm tọa độ giao điểm của hai đường thẳng. Dạng 2: Xét tính đồng quy của ba đường thẳng. Sau khi học xong, bạn cũng sẽ có bài tập về nhà để củng cố kiến thức. Vấn đề 4: Vị trí tương đối giữa hai đường thẳng Trong phần này, bạn sẽ được học về vị trí tương đối của hai đường thẳng, bao gồm: Dạng 1: Chỉ ra các cặp đường thẳng song song và cắt nhau. Dạng 2: Xác định phương trình đường thẳng. Sau khi học xong, bạn cũng sẽ có bài tập về nhà để tự kiểm tra kiến thức đã học. Vấn đề 5: Hệ số góc của đường thẳng y = ax + b (a ≠ 0) Trong phần này, bạn sẽ học về hệ số góc của đường thẳng y = ax + b (a ≠ 0), bao gồm: Dạng 1: Xác định hệ số góc của đường thẳng. Dạng 2: Xác định phương trình đường thẳng dựa vào hệ số góc. Sau khi học xong, bạn cũng sẽ có bài tập về nhà để rèn luyện kỹ năng giải bài toán.

Nguồn: sytu.vn

Đọc Sách

Hàm số, đồ thị và sự tương giao Dương Minh Hùng
Nội dung Hàm số, đồ thị và sự tương giao Dương Minh Hùng Bản PDF - Nội dung bài viết Sản phẩm Hàm số, đồ thị và sự tương giao Dương Minh Hùng Sản phẩm Hàm số, đồ thị và sự tương giao Dương Minh Hùng Tài liệu này được sắp xếp thành 28 trang bởi thầy giáo Dương Minh Hùng, để giúp các học sinh lớp 9 hiểu rõ về chủ đề hàm số, đồ thị và sự tương giao trong môn Toán. Tài liệu bao gồm: A. Tóm tắt lý thuyết I. Hàm số bậc nhất: Khái niệm hàm số bậc nhất và các tính chất. Đồ thị của hàm số y = ax + b (a khác 0) và cách vẽ đồ thị. Vị trí tương đối của hai đường thẳng. Hệ số góc của đường thẳng y = ax + b. Một số phương trình đường thẳng đặc biệt. II. Hàm số bậc hai: Khái niệm hàm số bậc hai và các tính chất. Đồ thị của hàm số y = ax2 (a khác 0) và cách vẽ đồ thị. Quan hệ giữa Parabol y = ax2 (a khác 0) và đường thẳng y = mx + n (m khác 0). B. Phân dạng toán cơ bản 1. Dạng Toán lớp 1: Vẽ đồ thị hàm số. 2. Dạng Toán lớp 2: Tìm tọa độ giao điểm của đường thẳng và Parabol. 3. Dạng Toán lớp 3: Tìm phương trình đường thẳng, phương trình Parabol. 4. Dạng Toán lớp 4: Tìm điều kiện của tham số m thỏa mãn yêu cầu cho trước. C. Bài tập rèn luyện Tài liệu này cung cấp các bài tập rèn luyện để học sinh có cơ hội luyện tập và áp dụng kiến thức đã học. Qua tài liệu này, học sinh sẽ được hướng dẫn chi tiết và dễ hiểu về hàm số, đồ thị và sự tương giao trong môn Toán, từ đó có thể áp dụng vào việc ôn thi và nâng cao kiến thức môn Toán của mình.
Phương trình bậc hai, hệ thức Vi-ét và ứng dụng Dương Minh Hùng
Nội dung Phương trình bậc hai, hệ thức Vi-ét và ứng dụng Dương Minh Hùng Bản PDF - Nội dung bài viết Phương trình bậc hai, hệ thức Vi-ét và ứng dụng Dương Minh Hùng Phương trình bậc hai, hệ thức Vi-ét và ứng dụng Dương Minh Hùng Tài liệu "Phương trình bậc hai, hệ thức Vi-ét và ứng dụng" được biên soạn bởi thầy giáo Dương Minh Hùng và bao gồm 26 trang. Trong tài liệu này, thầy giáo Hùng phân dạng và hướng dẫn giải các dạng toán liên quan đến phương trình bậc hai, hệ thức Vi-ét và các ứng dụng của chúng. Đây là tài liệu rất hữu ích cho học sinh lớp 9 khi học chương trình Toán lớp 9 và ôn thi vào lớp 10 môn Toán. Trong tài liệu, các nội dung chính bao gồm: Tóm tắt lý thuyết: Công thức nghiệm của phương trình bậc hai. Công thức nghiệm thu gọn và dễ áp dụng. Định lí Vi-ét và cách áp dụng vào giải phương trình. Ứng dụng Vi-ét trong nhận biết phương trình đặc biệt. Các ứng dụng của Vi-ét trong giải toán chứa tham số. Phân dạng toán cơ bản: Dạng 1: Giải phương trình quy về bậc nhất. Dạng 2: Giải phương trình bậc hai theo công thức nghiệm. Dạng 3: Tính giá trị của biểu thức nghiệm bằng hệ thức Vi-ét. Dạng 4: Giải toán có tham số mà áp dụng định lí Vi-ét. Bài tập rèn luyện: Tài liệu cũng cung cấp các bài tập rèn luyện để học sinh tự rèn luyện và kiểm tra kiến thức của mình sau khi học lý thuyết. Cùng với sự hướng dẫn cụ thể và dễ hiểu từ thầy giáo Dương Minh Hùng, tài liệu này sẽ giúp học sinh nắm vững kiến thức về phương trình bậc hai, hệ thức Vi-ét và ứng dụng của chúng, từ đó có thể tự tin hơn trong việc làm bài tập và ôn thi. Mục tiêu cuối cùng là giúp học sinh đạt kết quả tốt trong môn Toán và phát triển khả năng tư duy logic.
Các phép toán về căn thức Dương Minh Hùng
Nội dung Các phép toán về căn thức Dương Minh Hùng Bản PDF - Nội dung bài viết Các phép toán về căn thức Dương Minh Hùng Các phép toán về căn thức Dương Minh Hùng Tài liệu này được biên soạn bởi thầy giáo Dương Minh Hùng, với mục đích phân dạng và hướng dẫn giải các dạng toán về căn thức. Tài liệu gồm 19 trang, phù hợp cho học sinh lớp 9 tham khảo khi học chương trình Toán lớp 9 và ôn thi vào lớp 10 môn Toán. Bài giảng được chia thành ba phần chính: A. Tóm tắt lý thuyết: Căn bậc hai số học. Liên hệ giữa phép nhân với phép khai phương. Liên hệ giữa phép chia với phép khai phương. Biến đổi đơn giản biểu thức chứa căn thức bậc hai. B. Phân dạng toán cơ bản: Tập trung vào cách giải các dạng toán căn thức cơ bản như: Tìm điều kiện để biểu thức có chứa căn thức có nghĩa. Tính giá trị biểu thức chứa căn. Rút gọn biểu thức chứa căn. Rút gọn và tính giá trị biểu thức chứa căn. C. Bài tập rèn luyện: Nhằm giúp học sinh luyện tập và củng cố kiến thức về căn thức thông qua việc giải các bài tập thực hành. Chắc chắn rằng tài liệu này sẽ hỗ trợ học sinh trong việc hiểu và áp dụng các kiến thức liên quan đến căn thức một cách hiệu quả.
Phương pháp giải các dạng toán căn bậc hai, căn bậc ba
Nội dung Phương pháp giải các dạng toán căn bậc hai, căn bậc ba Bản PDF - Nội dung bài viết Tài liệu học phương pháp giải các dạng toán căn bậc hai, căn bậc ba Tài liệu học phương pháp giải các dạng toán căn bậc hai, căn bậc ba Tài liệu này bao gồm 54 trang, tóm tắt những kiến thức quan trọng và cung cấp hướng dẫn cách giải các dạng toán căn bậc hai và căn bậc ba, giúp học sinh lớp 9 dễ dàng tham khảo khi học chương trình Toán lớp 9 phần Đại số chương 1. Trong tài liệu, các bài được chia ra làm các phần sau: Bài 1: Giải các dạng toán liên quan đến căn bậc hai. Bao gồm cách tìm căn bậc hai của một số, so sánh các căn bậc hai, giải phương trình và bất phương trình liên quan đến căn bậc hai. Bài 2: Liên quan đến phép nhân và phép khai phương. Hướng dẫn khai phương một tích, nhân các căn bậc hai, rút gọn biểu thức và giải phương trình. Bài 3: Thảo luận về phép chia và phép khai phương. Bao gồm cách khai phương một thương, chia các căn bậc hai, rút gọn biểu thức và giải phương trình. Bài 4: Hướng dẫn sử dụng bảng căn bậc hai và biến đổi đơn giản biểu thức chứa căn thức bậc hai. Bài 5: Rút gọn biểu thức chứa căn thức bậc hai, bao gồm cách rút gọn biểu thức có các phép cộng, trừ, nhân, chia căn thức dưới dạng phân thức đại số. Bài 6: Hướng dẫn tìm căn bậc ba của một số, so sánh các căn bậc ba và giải phương trình liên quan đến căn bậc ba. Với cách trình bày cụ thể và dễ hiểu, tài liệu này sẽ giúp học sinh khái quát kiến thức và tự tin trong việc giải các dạng toán liên quan đến căn bậc hai và căn bậc ba trong chương trình Toán lớp 9.