Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Kỳ Anh Hà Tĩnh

Nội dung Đề học sinh giỏi huyện lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Kỳ Anh Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 8 huyện Kỳ Anh năm 2021 - 2022 Đề thi học sinh giỏi Toán lớp 8 huyện Kỳ Anh năm 2021 - 2022 Chúng ta sẽ cùng tìm hiểu và phân tích nội dung của đề thi học sinh giỏi môn Toán lớp 8 cấp huyện năm học 2021 - 2022 do Phòng Giáo dục và Đào tạo huyện Kỳ Anh, tỉnh Hà Tĩnh ban hành. 1. Bài toán về quãng đường từ Khu kinh tế Vũng Áng đến thành phố Vinh yêu cầu học sinh phải tính vận tốc ban đầu của người đi xe máy để đến đúng thời gian dự định sau khi nghỉ giải lao. Đây là một bài toán kinh điển về vận tốc, khoa học và logic. 2. Bài toán về tam giác ABC có AM là đường trung tuyến sẽ giúp học sinh phát triển kỹ năng giải bài toán hình học. Bằng cách sử dụng kiến thức về diện tích tam giác và đường trung tuyến, học sinh sẽ có cơ hội rèn luyện tư duy logic và khả năng phân tích bài toán. 3. Bài toán về việc tổ chọn ra các đấu thủ bóng bàn để thi đấu giao hữu sẽ giúp học sinh phát triển kỹ năng tư duy toán học và tính toán. Học sinh sẽ cần tính toán số lượng đấu thủ để đáp ứng yêu cầu của bài toán, từ đó rèn luyện khả năng suy luận và xử lý tình huống. Đề thi học sinh giỏi Toán lớp 8 huyện Kỳ Anh năm 2021 - 2022 không chỉ là cơ hội để học sinh thể hiện khả năng mà còn là dịp để rèn luyện kiến thức và kỹ năng giải bài toán. Chúc các em học sinh thành công trong việc giải quyết các bài toán thú vị này!

Nguồn: sytu.vn

Đọc Sách

Đề HSG Olympic Toán 8 năm 2022 - 2023 phòng GDĐT Quỳnh Lưu - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi Olympic môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quỳnh Lưu, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 05 tháng 04 năm 2023. Trích dẫn Đề HSG Olympic Toán 8 năm 2022 – 2023 phòng GD&ĐT Quỳnh Lưu – Nghệ An : + Cho tam giác ABC nhọn (AB < AC). Đường cao AD, BE, CF cắt nhau tại H. Gọi K là giao điểm của đường thẳng EF và đường thẳng BC. AD cắt EF tại I. Chứng minh rằng: Tam giác BDF đồng dạng với tam giác BAC. + Cho đa giác lồi 66 cạnh. Tại mỗi đỉnh của đa giác viết một số tự nhiên nhỏ hơn 2023. Chứng minh rằng tồn tại hai đường chéo của đa giác sao cho hiệu hai số viết ở hai đầu mỗi đường chéo bằng nhau. + Biết rằng đa thức P(x) chia cho x – 1 dư 2, P(x) chia cho x2 + 1 dư 3x + 4. Tìm đa thức dư trong phép chia P(x) cho (x – 1)(x2 + 1). Cho các số thực a, b, c thỏa mãn: Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức P.
Đề HSG cấp thị xã Toán 8 năm 2022 - 2023 phòng GDĐT Mỹ Hào - Hưng Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp thị xã môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thị xã Mỹ Hào, tỉnh Hưng Yên; kỳ thi được diễn ra vào ngày 05 tháng 04 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề HSG cấp thị xã Toán 8 năm 2022 – 2023 phòng GD&ĐT Mỹ Hào – Hưng Yên : + Cho tam giác ABC vuông tại A (AC > AB), đường cao AH (H thuộc BC). Trên tia HC lấy điểm D sao cho HD = HA. Đường vuông góc với BC tại D cắt AC tại E. a) Chứng minh: CB.CD = CE.CA. b) Cho AB = m (với m > 0). Tính độ dài đoạn BE theo m. c) Gọi M là trung điểm của đoạn BE. Tia AM cắt BC tại G. Chứng minh: GB HD BC AH HC. + Tìm giá trị của a, b sao cho đa thức 3 2 f x ax bx x 10 4 chia hết cho đa thức 2 gx x x 2. + Cho hai số không âm a và b thỏa mãn: 2 2 a b ab. Tìm giá trị lớn nhất của biểu thức: 4 5 1 1 a b S a b.
Đề học sinh năng khiếu Toán 8 năm 2022 - 2023 phòng GDĐT Yên Lập - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh năng khiếu cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Yên Lập, tỉnh Phú Thọ; đề thi hình thức 40% trắc nghiệm khách quan + 60% tự luận, thời gian làm bài 120 phút, không kể thời gian giao đề. Trích dẫn Đề học sinh năng khiếu Toán 8 năm 2022 – 2023 phòng GD&ĐT Yên Lập – Phú Thọ : + Cho tam giác ABC vuông tại A, đường cao AH. Qua B vẽ đường thẳng vuông góc với BC cắt đường thẳng AC tại D. Tia phân giác của góc C cắt AB tại N và cắt BD tại M. Hệ thức nào đúng? + Một giải đấu bóng đá theo hình thức thi đấu vòng tròn một lượt. Mỗi đội thắng được cộng 3 điểm, mỗi đội hòa được cộng 1 điểm, đội thua không được điểm. Kết thúc trậ đấu, ban tổ chức nhận thấy số trận thắng gấp ba lần số trận hòa, tổng số điểm là 330 điểm. Hỏi có bao nhiêu đội tham gia? + Cho hình vuông ABCD. Trên tia đối của tia CD lấy điểm E bất kì sao cho CE < CD. Kẻ DM vuông góc với BE (M thuộc BE), DM cắt BC tại H, EH cắt BD tại I, AC cắt BD tại O. a) Chứng minh rằng EI vuông góc với BD. b) Chứng minh rằng MI là tia phân giác của góc BMD. c) Tìm vị trí điểm E sao cho tam giác AMD có diện tích lớn nhất.
Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT huyện Phúc Thọ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chất lượng học sinh giỏi môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Phúc Thọ, thành phố Hà Nội; đề thi gồm 01 trang, hình thức tự luận với 05 bài toán, thời gian 120 phút (không kể giao đề); đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT huyện Phúc Thọ – Hà Nội : + Tìm các số tự nhiên n để A = (𝑛2 − 8)2 + 36 là số nguyên tố. + Đa thức f(x) chia cho (x + 1) dư 4, chia cho 𝑥2 + 1 dư 2𝑥 + 3. Tìm đa thức dư khi chia 𝑓(𝑥) cho (𝑥 + 1)(𝑥2 + 1). + Cho tam giác ABC nhọn có các đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh 𝐴𝐸𝐹 = 𝐴𝐵𝐶. b) Chứng minh BH.BE + CH.CF = 𝐵𝐶2. c) Chứng minh điểm H cách đều 3 cạnh của tam giác DEF. d) Trên đoạn thẳng HB, HC lần lượt lấy các điểm M, N sao cho HM = CN. Chứng minh đường trung trực của đoạn thẳng MN luôn đi qua một điểm cố định.