Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi KSCL lớp 10 môn Toán lần 1 năm 2018 2019 trường Trần Hưng Đạo Vĩnh Phúc

Nội dung Đề thi KSCL lớp 10 môn Toán lần 1 năm 2018 2019 trường Trần Hưng Đạo Vĩnh Phúc Bản PDF Nhằm kiểm tra chất lượng giữa học kỳ 1 năm học 2018 – 2019, lấy điểm hệ số 2 để làm cơ sở đánh giá và xếp loại học lực môn Toán lớp 10, trường THPT Trần Hưng Đạo – Vĩnh Phúc đã tổ chức kỳ thi KSCL Toán lớp 10 lần 1 năm 2018 – 2019, đề thi có mã đề 132 được biên soạn theo hình thức trắc nghiệm hoàn toàn với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, đề thi có đáp án. Trích dẫn đề thi KSCL Toán lớp 10 lần 1 năm 2018 – 2019 trường Trần Hưng Đạo – Vĩnh Phúc : + Mệnh đề nào sau đây là phủ định của mệnh đề “Mọi động vật đều di chuyển”? A. Mọi động vật đều không di chuyển. B. Có ít nhất một động vật di chuyển. C. Mọi động vật đều đứng yên. D. Có ít nhất một động vật không di chuyển. [ads] + Mệnh đề nào đúng? A. Véc tơ AB là đoạn thẳng có hướng. B. Véc tơ AB có độ dài bằng độ dài đoạn thẳng AB. C. Véc tơ AB có giá song song với đường thẳng AB. D. Véc tơ AB là đoạn thẳng AB. + Cho một tam giác vuông. Khi ta tăng mỗi cạnh góc vuông lên 2cm thì diện tích tam giác tăng thêm 17cm2. Nếu giảm các cạnh góc vuông đi 3cm và 1 cm thì diện tích tam giác giảm 11cm2. Tính diện tích của tam giác ban đầu. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề ĐGCB học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT chuyên KHTN Hà Nội
Nội dung Đề ĐGCB học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT chuyên KHTN Hà Nội Bản PDF Thứ Hai ngày 19 tháng 10 năm 2020, trường THPT chuyên Khoa học Tự nhiên, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội tổ chức kỳ thi đánh giá công bằng học kỳ 1 môn Toán lớp 10 năm học 2020 – 2021. Đề ĐGCB học kỳ 1 Toán lớp 10 năm 2020 – 2021 trường THPT chuyên KHTN – Hà Nội gồm 01 trang với 04 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề ĐGCB học kỳ 1 Toán lớp 10 năm 2020 – 2021 trường THPT chuyên KHTN – Hà Nội : + Xét đa giác đều 105 đỉnh, hỏi có bao nhiêu đa giác đều có đỉnh là đỉnh đa giác đã cho? + Xác định số cách chọn bộ 5 số từ tập 18 số nguyên dương đầu tiên sao cho 2 số bất kỳ trong 5 số được chọn có hiệu số giữa số lớn và số bé lớn hơn hoặc bằng 2. + Cho tập A = {0; 1; 2; 3; 4; 5}. Có bao nhiêu số gồm 5 chữ số của A mà mỗi số có đúng 3 chữ số giống nhau?
Đề kiểm tra kiến thức lớp chuyên Toán 10 năm 2020 2021 trường chuyên Lê Quý Đôn BR VT
Nội dung Đề kiểm tra kiến thức lớp chuyên Toán 10 năm 2020 2021 trường chuyên Lê Quý Đôn BR VT Bản PDF Đề kiểm tra kiến thức lớp chuyên Toán lớp 10 năm học 2020 – 2021 trường THPT chuyên Lê Quý Đôn, tỉnh Bà Rịa – Vũng Tàu gồm 01 trang với 04 bài toán tự luận, thời gian làm bài 150 phút. Trích dẫn đề kiểm tra kiến thức lớp chuyên Toán lớp 10 năm 2020 – 2021 trường chuyên Lê Quý Đôn – BR VT : + Cho đường tròn (O) và dây cung BC cố định không phải là đường kính. Gọi M là trung điểm của đoạn thẳng BC. Một điểm H thay đổi trên đoạn thẳng MB. Đường thẳng qua H, vuông góc với BC cắt đường tròn (O) tại hai điểm A, D sao cho HA > HD. Gọi E, F lần lượt là hình chiếu vuông góc của B,C trên hai cạnh CA, AB. Hai đường thẳng EF, BC cắt nhau tại điểm K. Đường thẳng AK cắt lại đường tròn (O) tại điểm L khác A. 1. Chứng minh rằng bốn điểm A, E, F, L cùng thuộc một đường tròn và ba đường thẳng BE, CF, LM đồng quy. 2. Gọi P là giao điểm của hai đường thẳng BE, FH và Q là giao điểm của hai đường thẳng CF, HE. Chứng minh ba điểm P, Q, K thẳng hàng. 3. Chứng minh rằng khi điểm H thay đổi trên đoạn thẳng MB thì đường thẳng LD luôn đi qua một điểm cố định. + Một nhóm gồm 9 người tham gia buổi offline, biết rằng cử ba người trong nhóm đó thì luôn có hai người không quen nhau. a) Gọi S là số cặp, mỗi cặp gồm hai người trong nhóm quen nhau. Chứng minh S < 20. b) Chứng minh trong nhóm có 4 người nào đó đôi một không quen biết nhau. + Trên bảng ta viết ba số thực không đồng thời bằng nhau. Mỗi lần giả sử trên bảng đang có ba số thực a, b, c ta xoá chúng đi và viết thay vào đó ba số khác là a – b; b – c; c – a. Chứng minh rằng nếu quá trình nói trên tiếp diễn nhiều lần, sẽ có lúc trên bảng thu được một số lớn hơn 2020.
Đề sát hạch lớp 10 môn Toán lần 3 năm 2019 2020 trường THPT Đoàn Thượng Hải Dương
Nội dung Đề sát hạch lớp 10 môn Toán lần 3 năm 2019 2020 trường THPT Đoàn Thượng Hải Dương Bản PDF Đề sát hạch Toán lớp 10 lần 3 năm 2019 – 2020 trường THPT Đoàn Thượng – Hải Dương mã đề 132, đề được biên soạn theo dạng đề thi trắc nghiệm với 50 câu hỏi và bài toán, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án. Trích dẫn đề sát hạch Toán lớp 10 lần 3 năm 2019 – 2020 trường THPT Đoàn Thượng – Hải Dương : + Cho tam giác có số đo ba cạnh là 3; 4; 5. Khẳng định nào đúng? A. Tam giác đều. B. Tam giác vuông. C. Tam giác cân. D. Tam giác tù. [ads] + Cho biểu thức f(x) = ax^2 + bx + c (a ≠ 0) và ∆ = b^2 – 4ac. Chọn khẳng định đúng? A. Khi ∆ < 0 thì f(x) cùng dấu với hệ số a với mọi x ∈ R. B. Khi ∆ = 0 thì f(x) trái dấu với hệ số a với mọi x ≠ −b/2a. C. Khi ∆ < 0 thì f(x) cùng dấu với hệ số a với mọi x ≠ −b/2a. D. Khi ∆ > 0 thì f(x) luôn trái dấu hệ số a với mọi x ∈ R. + Gọi S là tập hợp tất cả các giá trị thực của tham số m để phương trình mx + m – (m + 2)x = m^2 – 2x có tập nghiệm là R. Tính tổng tất cả các phần tử của S. File WORD (dành cho quý thầy, cô):
Đề kiểm tra chất lượng lớp 10 môn Toán lần 2 năm 2019 2020 trường THPT Lý Thái Tổ Bắc Ninh
Nội dung Đề kiểm tra chất lượng lớp 10 môn Toán lần 2 năm 2019 2020 trường THPT Lý Thái Tổ Bắc Ninh Bản PDF Thứ Bảy ngày 30 tháng 06 năm 2020, trường THPT Lý Thái Tổ, thị xã Từ Sơn, tỉnh Bắc Ninh tổ chức kỳ thi kiểm tra chất lượng môn Toán đối với học sinh lớp 10 lần thứ hai năm học 2019 – 2020. Đề kiểm tra chất lượng Toán lớp 10 lần 2 năm 2019 – 2020 trường THPT Lý Thái Tổ – Bắc Ninh gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 120 phút, đề thi có lời giải chi tiết. Trích dẫn đề kiểm tra chất lượng Toán lớp 10 lần 2 năm 2019 – 2020 trường THPT Lý Thái Tổ – Bắc Ninh : + Trong mặt phẳng với hệ trục tọa độ Oxy, cho hình chữ nhật ABCD có điểm M nằm trên cạnh CD sao cho DC = 3DM và điểm N đối xứng với điểm C qua điểm B. Biết đỉnh B(-2;2), điểm A nằm trên đường thẳng delta: x + y – 3 = 0 và đường thẳng MN có phương trình là 3x – 4y + 4 = 0. Xác định tọa độ các đỉnh còn lại của hình chữ nhật ABCD. [ads] + Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng d1: x – y – 1 = 0 và d2: 7x – y – 13 = 0. a. Tính cosin của góc tạo bởi hai đường thẳng d1 và d2. b. Viết phương trình tham số của đường thẳng delta đi qua gốc tọa độ O và song song với d2. c. Viết phương trình đường tròn (C) có tâm I nằm trên đường thẳng d1, tiếp xúc với d2 và có bán kính R = 3√2. + Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Hỏi có tất cả bao nhiêu giá trị nguyên dương của tham số m để bất phương trình f(-x^2 + 4x) > m có nghiệm thuộc khoảng [0;3]? File WORD (dành cho quý thầy, cô):