Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giữa học kỳ 2 Toán 9 năm 2023 - 2024 trường THCS Bế Văn Đàn - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi giữa học kỳ 2 môn Toán 9 năm học 2023 – 2024 trường THCS Bế Văn Đàn, quận Đống Đa, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Bảy ngày 02 tháng 03 năm 2024. Trích dẫn Đề giữa học kỳ 2 Toán 9 năm 2023 – 2024 trường THCS Bế Văn Đàn – Hà Nội : + Giải toán bằng cách lập hệ phương trình: Một xe máy đi từ A đến B với một vận tốc đã định. Nếu vận tốc tăng thêm 20km/h thì đến B sớm 1 giờ so với dự định, nếu vận tốc giảm đi 10km/h thì đến B muộn 1 giờ so với dự định. Tính vận tốc và thời gian dự định của xe máy. + Cho parabol (P): y = x2 có đồ thị là parabol (P) và hàm số y = -x + 2 có đồ thị là đường thẳng d. a) Vẽ đồ thị hai hàm số trên cùng một hệ trục tọa độ. b) Tìm tọa độ giao điểm A, B của đường thẳng (d) và Parabol (P) bằng phép tính. Tính diện tích tam giác AOB. + Cho đường tròn (O; R) đường kính AB. Điểm I nằm giữa A và B sao cho IA < IB. Qua I vẽ dây MN vuông góc với AB. Trên đoạn MI lấy điểm E (E khác M; E khác I). Tia AE cắt đường tròn tại điểm thứ hai là K. 1) Chứng minh tứ giác BKEI nội tiếp. 2) Chứng minh: AE.AK = AM2. 3) Chứng minh: 4R2 = BI.BA + AE.AK. 4) Xác định vị trí của điểm I sao cho chu vi tam giác MIO đạt giá trị lớn nhất. Tính giá trị lớn nhất đó theo R.

Nguồn: toanmath.com

Đọc Sách

Đề giữa kì 2 Toán 9 năm 2023 - 2024 trường THCS Võ Trường Toản - BR VT
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2023 – 2024 trường THCS Võ Trường Toản, tỉnh Bà Rịa – Vũng Tàu; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề giữa kì 2 Toán 9 năm 2023 – 2024 trường THCS Võ Trường Toản – BR VT : + Giải bài toán bằng cách lập phương trình, hệ phương trình: Hai vòi nước cùng chảy vào bể không có nước thì sau 16 giờ đầy bể. Nếu người ta mở vòi thứ nhất chảy trong 3 giờ rồi khóa lại và mở vòi thứ hai chảy trong 6 giờ thì được 25% bể. Tính thời gian mỗi vòi chảy một mình đầy bể. + Cho đường tròn tâm O, đường kính AB, vẽ tia tiếp tuyến Bx. M là điểm thuộc đường tròn (M khác điểm chính giữa cung AB). Tiếp tuyến tại M cắt Bx tại C. a) Chứng minh: Tứ giác BCMO nội tiếp. b) Chứng minh: AM // OC. c) Kẻ MH AB gọi I là giao điểm của AC và MH. Chứng minh: IH = IM. + Trong một đường tròn, góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn một cung thì: A. bằng một nửa. B. gấp đôi. C. bằng nhau.
Đề giữa kì 2 Toán 9 năm 2023 - 2024 trường THCS Ngọc Lâm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2023 – 2024 trường THCS Ngọc Lâm, quận Long Biên, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm.
Đề giữa kì 2 Toán 9 năm 2023 - 2024 trường THCS Phúc Đồng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2023 – 2024 trường THCS Phúc Đồng, quận Long Biên, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 13 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm.
Đề giữa học kỳ 2 Toán 9 năm 2023 - 2024 trường THCS Hai Bà Trưng - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kỳ 2 môn Toán 9 năm học 2023 – 2024 trường THCS Hai Bà Trưng, quận 3, thành phố Hồ Chí Minh. Trích dẫn Đề giữa học kỳ 2 Toán 9 năm 2023 – 2024 trường THCS Hai Bà Trưng – TP HCM : + Cho phương trình: 2×2 + 3x – 2 = 0 có hai nghiệm là x1 và x2. a) Tính tổng và tích của hai nghiệm x1 và x2. b) Không giải phương trình, hãy tính giá trị của biểu thức: A = x12 + x22. + Bạn Bình tiêu thụ 10,4 ca-lo cho mỗi phút bơi và 4,8 ca-lo mỗi phút chạy bộ. Bạn Bình cần tiêu thụ tổng cộng 324 ca-lo trong 50 phút với hai hoạt động trên. Vậy bạn Bình cần bao nhiêu thời gian cho mỗi hoạt động? + Cho tam giác SMN nhọn nội tiếp đường tròn (O) (SM < SN). Ba đường cao SI, MF, NE của tam giác SMN cắt nhau tại D. a) Chứng minh EFNM là tứ giác nội tiếp. b) Đường thẳng SI cắt đường tròn (O) tại A (A khác S). Qua A vẽ đường thẳng vuông góc với SN, đường thẳng này cắt MN tại H, cắt đường tròn (O) tại K (K khác A). Chứng minh HA.HK = HM.HN. c) Gọi T là giao điểm của FE và NM; ST cắt đường tròn (O) tại C (C khác S). Chứng minh ba điểm K, F, C thẳng hàng.