Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài toán tính góc giữa hai mặt phẳng

Bài toán tính góc giữa hai mặt phẳng là bài toán tương đối khó và nằm ở mức vận dụng và vận dụng cao, bên cạnh những phương pháp truyền thống như dựng hình tạo góc thì trong chủ đề này chúng ta sẽ cùng tìm hiểu tới 3 phương pháp giải quyết các bài toán trắc nghiệm có thể nói gần như mọi bài toán tính góc giữa 2 mặt phẳng mà ta hay gặp. I. CÁC PHƯƠNG PHÁP XỬ LÝ PHƯƠNG PHÁP 1 . SỬ DỤNG CÔNG THỨC HÌNH CHIẾU. Đây là một tính chất khá là cơ bản trong chương trình hình học 11 mà ta cần nắm rõ, công thức của nó rất đơn giản như sau: Cho hình S thuộc mặt phẳng (P), hình S’ là hình chiếu của S lên mặt phẳng (Q), khi đó ta có cosin góc giữa hai mặt phẳng (P) và (Q) được tính theo công thức cosα = S’/S. PHƯƠNG PHÁP 2 . SỬ DỤNG CÔNG THỨC GÓC NHỊ DIỆN. Đây là một công cụ rất mạnh để giải quyết các bài toán tính góc giữa 2 mặt phẳng, hầu hết các bài toán đơn giản hay đến phức tạp đều có thể giải bằng phương pháp này. Các bước thực hiện: Bước 1: Đưa góc giữa hai mặt phẳng về góc giữa hai mặt phẳng kề nhau của một tứ diện. Chú ý điều này luôn thực hiện được. Bước 2: Sử dụng công thức: V = 2S1S2sinα/3a. Trong đó S1, S2 lần lượt là diện tích hai tam giác kề nhau của tứ diện, a là độ dài giao tuyến, còn α là góc giữa hai mặt phẳng cần tìm. [ads] PHƯƠNG PHÁP 3 . SỬ DỤNG PHƯƠNG PHÁP TỌA ĐỘ HÓA. Nói chung đây cũng là một phương pháp rất mạnh, tuy nhiên nhược điểm của nó là phải nhớ công thức tính hơi cồng kềnh và chỉ áp dụng cho những trường hợp ta dựng được hoặc trong bài toán có yếu tố 3 đường vuông góc. Cách thực hiện: Bước 1: Xác định 3 đường vuông góc chung. Bước 2: Gắn hệ trục tọa độ Oxyz, coi giao điểm của 3 đường vuông góc chung là gốc tọa độ. Bước 3: Từ giả thiết tìm tọa độ của các điểm có liên quan tới giả thiết. Bước 4: Áp dụng công thức cần tính để suy ra kết quả. Theo kinh nghiệm thì những bài toán có giả thiết liên quan tới hình hộp chữ nhật, hình lập phương thì thì ta nên sử dụng phương pháp tọa độ hóa, ngoài ra các bài có yếu tố một cạnh của chóp vuông góc với đáy hay liên quan tới lăng trụ đứng ta cũng có thể sử dụng phương pháp này nhưng tùy vào từng bài mà ta có hướng đi khác nhau, có thể là sử dụng phương pháp 2 hoặc sử dụng phương pháp 1, tùy vào kỹ năng của người làm bài. II. BÀI TẬP TỰ LUYỆN

Nguồn: toanmath.com

Đọc Sách

Khối đa diện và thể tích khối đa diện - Lư Sĩ Pháp
Tài liệu chuyên đề khối đa diện và thể tích khối đa diện được biên soạn bởi thầy Lư Sĩ Pháp, gồm 65 trang, là cuốn tài liệu tự học chuyên đề Hình học 12 chương 1. Tài liệu bao gồm tóm tắt lý thuyết hình học không gian, phân dạng toán và các bài tập về khối đa diện, thể tích khối đa diện cũng như các dạng toán liên quan như góc, khoảng cách … Tài liệu được biên soạn theo hình thức tự luận kết hợp với trắc nghiệm, vừa giúp các em học sinh nắm vững được phương pháp giải toán, vừa đáp ứng được nhu cầu giải toán trắc nghiệm hiện hành. Các bài toán trong tài liệu đều có đáp án hoặc lời giải chi tiết. Xem thêm : Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số – Lư Sĩ Pháp
Trắc nghiệm khối đa diện và các dạng toán liên quan - Trần Thanh Hiền
Tài liệu gồm 38 trang tuyển chọn các bài toán trắc nghiệm có đáp án chủ đề khối đa diện và các dạng toán liên quan, tài liệu được biên soạn bởi thầy Trần Thanh Hiền. Các dạng toán trong tài liệu gồm có : + Dạng 1. Khối đa diện. + Dạng 2. Thể tích khối đa diện: Thể tích khối chóp, Thể tích khối lăng trụ. + Dạng 3. Tỉ lệ thể tích. + Dạng 4. Mặt cầu ngoại tiếp khối đa diện. + Dạng 5. Khoảng cách từ một điểm đến mặt phẳng. + Dạng 6. Khoảng cách giữa hai đường thẳng chéo nhau. + Tuyển chọn 4 đề kiểm tra rèn luyện chủ đề khối đa diện và các dạng toán liên quan, mỗi đề gồm 20 câu hỏi.
Giải toán 12 khối đa diện và khối tròn xoay - Trần Đức Huyên
Cuốn sách Giải toán 12 khối đa diện và khối tròn xoay được biên soạn bám sát cấu trúc của sách giáo khoa Hình học 12, sách được biên soạn bởi các tác giả Trần Đức Huyên (chủ biên), Nguyễn Duy Hiếu, Phạm Thị Bé Hiền. Chương I . KHỐI ĐA DIỆN. THỂ TÍCH CỦA KHỐI ĐA DIỆN Bài 1. Khái niệm về khối đa diện. + Vấn đề 1. Chứng minh một số tính chất liên quan đến đỉnh, cạnh và mặt của một khối đa diện. + Vấn đề 2. Phân chia và lắp ghép các khối đa diện. Bài 2. Phép đối xứng qua mặt phẳng. Sự bằng nhau của các khối đa diện. + Vấn đề 1. Chứng minh hai hình bằng nhau. + Vấn đề 2. Chứng minh một phép biến hình là phép dời hình. Bài 3. Phép vị tự. Sự đồng dạng của các khối đa diện. Các khối đa diện đều. Bài 4. Thể tích của khối đa diện. [ads] Chương II . MẶT CẦU. MẶT TRỤ. MẶT NÓN Bài 1. Mặt cầu. Khối cầu. + Vấn đề 1. Xác định mặt cầu. + Vấn đề 2. Mặt cầu ngoại tiếp, nội tiếp hình chóp. + Vấn đề 3. Diện tích mặt cầu. Thể tích khối cầu. + Vấn đề 4. Tiếp tuyến của mặt cầu. Bài 2. Mặt trụ. Hình trụ. Khối trụ. + Vấn đề 1. Xác định mặt trụ. + Vấn đề 2. Diện tích xung quanh hình trụ. Thể tích khối trụ. + Vấn đề 3. Thiết diện của hình trụ cắt bởi một mặt phẳng. Bài 3. Mặt nón. Hình nón. Khối nón. + Vấn đề 1. Diện tích xung quanh. Diện tích toàn phần hình nón. Thể tích khối nón. + Vấn đề 2. Hình nón nội tiếp, ngoại tiếp hình chóp. Hình nón nội tiếp, ngoại tiếp mặt cầu. Bài 4. Tổ hợp hình cầu, hình trụ, hình nón.
Trắc nghiệm nâng cao khối đa diện - Đặng Việt Đông
Tài liệu gồm 125 trang được biên soạn bởi thầy Đặng Việt Đông tuyển tập các bài toán trắc nghiệm nâng cao khối đa diện có đáp án và lời giải chi tiết, nhằm giúp các em học sinh khối 12 luyện đạt điểm 8 – 9 – 10 trong kỳ thi THPT Quốc gia môn Toán, các bài toán được trích dẫn từ các đề thi thử môn Toán của các trường THPT và cơ sở GD & ĐT trên toàn quốc. Xem thêm : + Trắc nghiệm nâng cao nón – trụ – cầu – Đặng Việt Đông + Trắc nghiệm nâng cao hình học tọa độ Oxyz – Đặng Việt Đông