Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán 9 năm 2023 - 2024 sở GDĐT Phú Thọ

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Phú Thọ; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2023 – 2024 sở GD&ĐT Phú Thọ : + Cho nửa đường tròn (O) đường kính BC R 2. Điểm A di động trên nửa đường tròn (O). Gọi H là hình chiếu của điểm A lên BC. Gọi D và E lần lượt là hình chiếu của H lên AC và AB. Giá trị lớn nhất của diện tích tứ giác AEHD bằng? + Một nhóm bạn đi câu cá. Bạn câu được ít nhất câu được 1 7 tổng số cá mà cả nhóm câu được, bạn câu được nhiều nhất câu được 1 5 tổng số cá mà cả nhóm câu được. Biết rằng số cá câu được của mỗi bạn là khác nhau. Số người của nhóm đi câu cá là? + Cho tam giác ABC nhọn (AB AC), có trực tâm H và nội tiếp trong đường tròn (O). Gọi DEF tương ứng là chân các đường cao của tam giác ABC kẻ từ ABC. Tia AO cắt BC tại M, gọi P Q tương ứng là hình chiếu của M trên các cạnh AC AB. a) Chứng minh tam giác HFE đồng dạng với tam giác MPQ. b) Chứng minh 2 AB DB MB AC DC MC. c) Khi điểm A di động trên (O), dây cung BC cố định sao cho tam giác ABC nhọn. Đường thẳng chứa tia phân giác ngoài của góc BHC cắt AB AC lần lượt tại hai điểm R N. Đường tròn ngoại tiếp tam giác ARN cắt đường phân giác trong của BAC tại điểm thứ hai là K. Chứng minh rằng đường thẳng HK luôn đi qua một điểm cố định.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Thái Hòa Nghệ An
Nội dung Đề thi học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Thái Hòa Nghệ An Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 năm 2022-2023 Đề thi học sinh giỏi Toán lớp 9 năm 2022-2023 Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán lớp 9 cấp thị xã năm học 2022-2023 do phòng Giáo dục và Đào tạo Thái Hòa, tỉnh Nghệ An tổ chức. Dưới đây là một số bài toán trong đề thi: Cho a, b, c là các số thực dương thỏa mãn abc = 1. Hãy tìm giá trị lớn nhất của biểu thức A. Cho tam giác ABC nhọn, có các đường cao AD, BE, CF cắt nhau tại H. Gọi I, K, M, N lần lượt là hình chiếu của điểm D trên các đường thẳng BE, CF, AB, AC. a) Chứng minh: HI.HB = HK.HC. b) Chứng minh: IK // EF và bốn điểm I, K, M, N thẳng hàng. c) Trong các tam giác AEF, BDF, CDE có ít nhất một tam giác có diện tích nhỏ hơn hoặc bằng 1/4 diện tích tam giác ABC. Cho 69 số nguyên dương phân biệt không vượt quá 100. Chứng minh rằng có thể chọn ra từ 69 số đó 4 số sao cho trong chúng có 1 số bằng tổng của 3 số còn lại. Đề thi năm nay đầy thách thức và bổ ích, hy vọng các em học sinh sẽ tự tin và tỏa sáng trong kỳ thi sắp tới.
Đề thi HSG lớp 9 môn Toán cấp thị xã năm 2022 2023 phòng GD ĐT Ninh Hòa Khánh Hòa
Nội dung Đề thi HSG lớp 9 môn Toán cấp thị xã năm 2022 2023 phòng GD ĐT Ninh Hòa Khánh Hòa Bản PDF - Nội dung bài viết Đề thi HSG Toán lớp 9 cấp thị xã Ninh Hòa năm 2022 - 2023 Đề thi HSG Toán lớp 9 cấp thị xã Ninh Hòa năm 2022 - 2023 Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay Sytu xin giới thiệu đến mọi người đề thi chọn học sinh giỏi môn Toán lớp 9 THCS cấp thị xã năm học 2022 - 2023 do Phòng Giáo dục và Đào tạo Ninh Hòa, tỉnh Khánh Hòa tổ chức. Trích dẫn một số câu hỏi từ đề thi: Cho bảy số nguyên tố phân biệt thỏa mãn chia hết cho 2. Chứng minh rằng P1 = 2, P2 = 3, P3 = 5. Gọi A là một tập hợp con của tập X = {1; 2; 3; ...; 2022} thỏa mãn điều kiện A có ít nhất 2 phần tử và nếu x thuộc A, y thuộc A, x > y thì 7y^2 / (4x - y) thuộc A. Hỏi có bao nhiêu tập hợp A như vậy? Cho tam giác ABC vuông tại A, điểm D trên cạnh huyền BC (D khác B và C). Chứng minh rằng BK vuông góc CE. Các em học sinh có thể thấy đề thi này đa dạng, phong phú với nhiều dạng bài tập khác nhau, giúp rèn luyện kỹ năng Toán và tư duy logic của mình. Hy vọng rằng các em sẽ giữ vững tinh thần và tự tin trước những thách thức mà đề thi đưa ra. Chúc các em học tốt và đạt kết quả cao trong kỳ thi sắp tới!