Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi vào lớp 10 chuyên môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Kiên Giang

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Kiên Giang; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2023. Trích dẫn Đề thi vào lớp 10 chuyên môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Kiên Giang : + Cho một hình vuông có cạnh bằng 19 và có 2024 điểm phân biệt tùy ý trong hình vuông. Chứng minh rằng luôn tồn tại một hình tròn có bán kính bằng 1 chứa ít nhất 6 điểm trong 2024 điểm đã cho (các hình đã cho đều đo bằng cùng đơn vị đo). + Cho tam giác ABC vuông cân tại A, cạnh AB có độ dài bằng 22. Gọi điểm M thuộc cạnh AC sao cho MC = 2AM. Kẻ đường thẳng qua A vuông góc với BM tại H và cắt BC tại D. Điểm K thuộc đường thẳng AD sao cho CK vuông góc AD. Tính độ dài đoạn AH và đoạn CD. + Cho tam giác ABC (AB < AC), cả ba góc đều là góc nhọn và nội tiếp trong đường tròn tâm O. Ba đường cao của tam giác ABC là AD, BM, CN (D thuộc BC, M thuộc AC, N thuộc AB) đồng quy tại H. Đường thẳng MN cắt BC tại S. Gọi I, K lần lượt là trung điểm của AH và BC, Q là giao điểm của AD với MN. Đường thẳng qua H song song với BC cắt SM tại P. a) Chứng minh SB.SC = SM.SN. b) Chứng minh DIK đồng dạng với HPQ. c) Chứng minh HD ID HQ OK.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán vào 10 năm 2023 - 2024 trường chuyên Lam Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán ôn thi tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa; đề thi chung dành cho tất cả các thí sinh; kỳ thi được diễn ra vào Chủ Nhật ngày 16 tháng 04 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán vào 10 năm 2023 – 2024 trường chuyên Lam Sơn – Thanh Hóa : + Cho tam giác ABC có ba góc nhọn. Hai đường cao của tam giác đó là AD, BE cắt nhau tại H với D BC E AC. 1. Chứng minh CDHE là tứ giác nội tiếp một đường tròn, tìm vị trí tâm I của đường tròn đó. 2. Chứng minh HA HD HB HE. 3. Chứng minh IE là tiếp tuyến của đường tròn ngoại tiếp tam giác BDE (với I là tâm đường tròn ngoại tiếp tứ giác CDHE). + Trong mặt phẳng tọa độ Oxy, đường thẳng d y ax b đi qua điểm M 1 2 và song song với đường thẳng 2 3 d y x. Tìm các hệ số a và b. + Cho ba số dương a b c thỏa mãn 2 2 2 a b c 9. Tìm giá trị nhỏ nhất của biểu thức a b c 2 5 P bc ca ab.
Đề tham khảo tuyển sinh lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Tây Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi tham khảo kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Tây Ninh; đề thi hình thức tự luận, gồm 01 trang với 10 bài toán, thời gian làm bài 120 phút. Trích dẫn Đề tham khảo tuyển sinh lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Tây Ninh : + Hai lớp 9A và 9B có tổng số học sinh là 78. Trong một năm học mỗi học sinh lớp 9A đã sử dụng 3 quyển tập cho môn Toán, mỗi học sinh lớp 9B đã sử dụng 2 quyển tập cho môn Toán. Tính số học sinh của mỗi lớp, biết rằng tổng số quyển tập cho môn Toán mà hai lớp đã sử dụng trong một năm học là 194 quyển. + Cho tam giác ABC có ba góc nhọn (AB < AC) và có đường cao AH. Đường tròn tâm O đường kính AH cắt các cạnh AB, AC của tam giác ABC lần lượt tại E và F. Chứng minh điểm B thuộc đường tròn ngoại tiếp tam giác EFC. + Cho hình vuông ABCD nội tiếp đường tròn (O) có đường kính bằng 5. Gọi E là điểm trên đoạn thẳng BD sao cho BE > ED, đường thẳng AE cắt (O) tại F và đường thẳng BF cắt AC tại G. Tính diện tích tứ giác ABGE.
Đề Toán định hướng vào 10 năm 2023 - 2024 trường THCS Trần Mai Ninh - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi môn Toán định hướng vào lớp 10 THPT năm học 2023 – 2024 trường THCS Trần Mai Ninh, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 25 tháng 02 năm 2023. Trích dẫn Đề Toán định hướng vào 10 năm 2023 – 2024 trường THCS Trần Mai Ninh – Thanh Hóa : + Cho hai đường thẳng (d1): y = (m − 2)x + 3 (với m khác 2) và (d2): y = 3x + m. Tìm m để hai đường thẳng (d1) và (d2) song song với nhau. + Tìm m để đường thẳng (d1) cắt Ox tại A, cắt Oy tại B sao cho tam giác OAB vuông cân. + Cho đường tròn (O) đường kính MN = 2R. Trên đoạn thẳng OM lấy điểm F (F khác O và M). Dây PA vuông góc với MN tại F. Trên cung nhỏ NP lấy điểm D bất kỳ (D khác N, D khác P), MD cắt PF tại I, gọi E là giao điểm của NP với tiếp tuyến tại M của (O). 1. Chứng minh rằng: Bốn điểm N, D, I, F cùng thuộc một đường tròn. 2. Chứng minh: MI.MD = PN.PE. 3. Khi F là trung điểm của OM và D chạy trên cung nhỏ NP. Tìm vị trí điểm D để DN + DP lớn nhất. Tìm giá trị lớn nhất đó.
Đề khảo sát Toán thi THPT tháng 2 năm 2023 trường THCS Đại Phúc - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát môn Toán ôn thi vào lớp 10 THPT tháng 2 năm 2023 trường THCS Đại Phúc, tỉnh Bắc Ninh; đề thi gồm 40 câu trắc nghiệm (04 điểm – 50 phút) và 04 câu tự luận (04 điểm – 70 phút). Trích dẫn Đề khảo sát Toán thi THPT tháng 2 năm 2023 trường THCS Đại Phúc – Bắc Ninh : + Cho tam giác ABC vuông tại A có AC = 20cm. Đường tròn đường kính AB cắt BC tại M (M không trùng với B), tiếp tuyến tại M của đường tròn đường kính AB cắt AC tại I. Độ dài đoạn AI bằng A. 10cm B. 6cm C. 12cm D. 9cm. + Một rạp hát có 300 chỗ ngồi. Nếu mỗi dãy thêm 2 chỗ ngồi và bớt đi 3 dãy ghế thì rạp hát sẽ giảm đi 11 chỗ ngồi. Hãy tính xem trước khi có dự kiến sắp xếp trong rạp hát có mấy dãy ghế? Mỗi dãy ghế có bao nhiêu chỗ ngồi. A. 10 dãy và 30 ghế B. 15 dãy và 20 ghế C. 10 ghế và 30 dãy D. 20 dãy và 15 ghế. + Cho đường thẳng a và điểm O cách a một khoảng 2,5cm. Vẽ đường tròn tâm O đường kính 5 cm. Khi đó đường thẳng a A. không cắt đường tròn B. Tiếp xúc với đường tròn C. Cắt đường tròn tại hai điểm phân biệt D. Cắt đường tròn theo một dây có độ dài bằng đường kính.